cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343573 a(n) = Sum_{d|n} d^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46750, 823544, 16778257, 387420652, 10000015646, 285311670612, 8916100731047, 302875106592254, 11112006831322846, 437893890380906656, 18446744073843774497, 827240261886336764178, 39346408075300025340205
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p^p.

A343568 a(n) = Sum_{d|n} (n/d)^(n/d) * binomial(d+n-1,n).

Original entry on oeis.org

1, 7, 37, 311, 3251, 47419, 825259, 16786615, 387446284, 10000130757, 285312023327, 8916102467195, 302875111792553, 11112006858124501, 437893890458947787, 18446744074296533175, 827240261887503567287, 39346408075308452154628
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(n/#) * Binomial[# + n - 1, n] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(n/d)*binomial(d+n-1, n));

Formula

a(n) = [x^n] Sum_{k>=1} (k * x)^k/(1 - x^k)^(n+1).
Showing 1-2 of 2 results.