cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343594 Numbers k that, when written in all bases from base 2 to base 10, are a substring of k^k when written in the same base.

Original entry on oeis.org

1, 5, 17, 25, 31, 41, 63, 92, 151, 170, 202, 221, 263, 266, 278, 322, 327, 347, 364, 401, 404, 412, 421, 423, 437, 467, 470, 482, 490, 498, 501, 515, 519, 543, 558, 578, 590, 612, 623, 636, 646, 647, 671, 683, 685, 705, 707, 717, 718, 726, 764, 785, 795, 859, 867, 872, 875, 881, 890, 892, 897
Offset: 1

Views

Author

Scott R. Shannon, Apr 21 2021

Keywords

Examples

			5 is a term. See below table:
.
   base  |  5 in base  |  5^5 in base
---------+-------------+-------------
    10          5                3125
     9          5                4252
     8          5                6065
     7          5               12053
     6          5               22245
     5         10              100000
     4         11              300311
     3         12            11021202
     2        101        110000110101
.
5^5 in all bases contains 5 in that base as a substring.
		

Crossrefs

Programs

  • PARI
    str(v) = my(s=""); for (k=1, #v, s = concat(s, Str(v[k]))); s;
    isok(k) = {for (b=2, 10, my(kb = digits(k, b), kkb = digits(k^k, b)); if (#strsplit(str(kkb), str(kb)) <=1 , return (0));); return (1);} \\ Michel Marcus, Apr 26 2021
  • Python
    from sympy.ntheory import digits
    def nstr(n, b): return "".join(map(str, digits(n, b=b)[1:]))
    def ok(k): return all(nstr(k, b) in nstr(k**k, b) for b in range(10, 1, -1))
    print(list(filter(ok, range(900)))) # Michael S. Branicky, Apr 25 2021