A343664 Number of partitions of an n-set without blocks of size 4.
1, 1, 2, 5, 14, 47, 173, 702, 3125, 14910, 76495, 418035, 2418397, 14791597, 95093612, 641094695, 4521228732, 33250447919, 254585084539, 2024995604762, 16702070759557, 142642458681486, 1259387604241013, 11479967000116911, 107910143688962037, 1044735841257587203, 10407104137208385924
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..581
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=4, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..26); # Alois P. Heinz, Apr 25 2021
-
Mathematica
nmax = 26; CoefficientList[Series[Exp[Exp[x] - 1 - x^4/4!], {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^k BellB[n - 4 k]/((n - 4 k)! k! (4!)^k), {k, 0, Floor[n/4]}], {n, 0, 26}] a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 4, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
Formula
E.g.f.: exp(exp(x) - 1 - x^4/4!).
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k * Bell(n-4*k) / ((n-4*k)! * k! * (4!)^k).