A343669 Number of partitions of an n-set without blocks of size 9.
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115965, 678460, 4212497, 27633712, 190795218, 1381942530, 10470109267, 82764226404, 681048663329, 5822029128397, 51610194855972, 473631475252041, 4492967510009533, 43996047374513046, 444151309687221889, 4617189912288741028
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=9, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
Mathematica
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^9/9!], {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^k BellB[n - 9 k]/((n - 9 k)! k! (9!)^k), {k, 0, Floor[n/9]}], {n, 0, 25}] a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Formula
E.g.f.: exp(exp(x) - 1 - x^9/9!).
a(n) = n! * Sum_{k=0..floor(n/9)} (-1)^k * Bell(n-9*k) / ((n-9*k)! * k! * (9!)^k).