A367835
Expansion of e.g.f. 1/(2 - x - exp(2*x)).
Original entry on oeis.org
1, 3, 22, 242, 3544, 64872, 1424976, 36517840, 1069533824, 35240047232, 1290137297152, 51955085596416, 2282489348834304, 108630445541684224, 5567741266098944000, 305752314499878569984, 17909736027185859100672, 1114647522476340562132992
Offset: 0
-
A367835 := proc(n)
option remember ;
if n = 0 then
1 ;
else
n*procname(n-1)+add(2^k*binomial(n,k)*procname(n-k),k=1..n) ;
end if;
end proc:
seq(A367835(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
A355110
Expansion of e.g.f. 2 / (3 - 2*x - exp(2*x)).
Original entry on oeis.org
1, 2, 10, 76, 768, 9696, 146896, 2596448, 52449536, 1191944704, 30097334784, 835973778432, 25330620762112, 831497823494144, 29394162040580096, 1113330929935101952, 44979662118902366208, 1930798895281527717888, 87756941394038739828736, 4210241529540625311727616
Offset: 0
-
nmax = 19; CoefficientList[Series[2/(3 - 2 x - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
A343673
a(0) = 1; a(n) = 3 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k).
Original entry on oeis.org
1, 4, 33, 409, 6759, 139621, 3460989, 100091335, 3308146179, 123005753041, 5081871122073, 230948185830187, 11449697796242319, 614944043618257237, 35568197580789653685, 2204201734650777596863, 145703352769994600516187, 10233323176300508748808921, 761004837938469796089586257
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(2 - 3 x - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
A343674
a(0) = 1; a(n) = 4 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k).
Original entry on oeis.org
1, 5, 51, 781, 15947, 407021, 12466251, 445452813, 18191122219, 835737327661, 42661645147403, 2395510523568845, 146739531459316587, 9737742346694258157, 695911661109898805323, 53286006304099668950413, 4352120920347139791200171, 377674509364714706139413933, 34702277449656625185428239755
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(2 (1 - 2 x) - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-4 of 4 results.