A343675 Undulating alternating palindromic primes.
2, 3, 5, 7, 101, 181, 383, 727, 787, 929, 10301, 10501, 14341, 16361, 16561, 18181, 30103, 30703, 32323, 36563, 38183, 38783, 70507, 72727, 74747, 78787, 90709, 94949, 96769, 1074701, 1092901, 1212121, 1218121, 1412141, 1616161, 1658561, 1856581, 1878781, 3072703
Offset: 1
Examples
16361 is a term as it is a palindromic prime, the digits 1, 6, 3, 6 and 1 have odd and even parity alternately, and also alternately rise and fall.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Union@Flatten[{{2,3,5,7},Array[Select[FromDigits/@Riffle@@@Tuples[{Tuples[{1,3,5,7,9},#],Tuples[{0,2,4,6,8},#-1]}],(s=Union@Partition[Sign@Differences@IntegerDigits@#,2];(s=={{1,-1}}||s=={{-1,1}})&&PrimeQ@#&&PalindromeQ@#)&]&,4]}] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
Python
from sympy import isprime def f(w): for s in w: for t in range(int(s[-1])+1,10,2): yield s+str(t) def g(w): for s in w: for t in range(1-int(s[-1])%2,int(s[-1]),2): yield s+str(t) A343675_list = [2,3,5,7] for l in range(1,9): for d in '1379': x = d for i in range(1,l+1): x = g(x) if i % 2 else f(x) A343675_list.extend([int(p+p[-2::-1]) for p in x if isprime(int(p+p[-2::-1]))]) y = d for i in range(1,l+1): y = f(y) if i % 2 else g(y) A343675_list.extend([int(p+p[-2::-1]) for p in y if isprime(int(p+p[-2::-1]))])
Comments