cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343695 a(n) is the number of preference profiles in the stable marriage problem with n men and n women, where men prefer different women and women prefer different men as their first choices.

Original entry on oeis.org

1, 4, 2304, 967458816, 913008685901414400, 4622106472375910400000000000000, 255573619105709190896159859671040000000000000000, 281792629748570725486109522755987396047015304495104000000000000000000, 10444688389799535672440661668710965357968392730721066975209656086980827545600000000000000000000
Offset: 1

Views

Author

Tanya Khovanova and MIT PRIMES STEP Senior group, May 25 2021

Keywords

Comments

For these profiles both men-proposing and women-proposing Gale-Shapley algorithms end in one round.
This is a subsequence of A001013.

Examples

			When n = 3, there are 3! ways for men to pick their first choices and 2!^3 ways to complete their lists of preferences. The same calculation works for women's preferences. As the preferences of different genders are independent, we have a total of 3!^2 * 2!^6 = 2304 such preference profiles for n = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[n!^2 (n - 1)!^(2 n), {n, 10}]

Formula

a(n) = n!^2 * (n-1)!^(2*n).
a(n) = A343694(n)^2.

A344662 a(n) is the number of preference profiles in the stable marriage problem with n men and n women so that they form n pairs of people of different genders who rank each other first, and so that the men's preferences arranged in a matrix form a Latin square.

Original entry on oeis.org

1, 2, 96, 746496, 1284211998720, 2427160677580800000000, 6166762687851449045483520000000000, 45287412266290145430585597857888710164480000000000, 1555956528335898586085189699733983238252540690603399394099200000000000, 395245501240598487865502317687285665641954608158944047815164739503046322343116800000000000000
Offset: 1

Views

Author

Tanya Khovanova and MIT PRIMES STEP Senior group, May 30 2021

Keywords

Comments

Two people who rank each other first are called soulmates. The profiles in this sequence are required to have n pairs of soulmates.
The profiles with n pairs of soulmates are counted by sequence A343698. The profiles such that the men's preference form a Latin square are counted by A343696. The profiles in this sequence are the intersection of profiles in A343696 and A343698.
The Gale-Shapley algorithm (both men-proposing and women-proposing) on the preference profiles described by this sequence ends in one round.

Examples

			For n = 3, there are A002860(3) = 12 ways to set up the men's preference profiles, where A002860(n) is the number of Latin squares of order n. The men's first preferences set the women's first preferences, so we only need to complete the women's profiles with other preferences, which can be done in 2!^3 = 8 ways. Thus, A344662(3) = 12 * 8 = 96.
		

Crossrefs

Formula

a(n) = (n-1)!^n * A002860(n) = A343696(n)/n^n.

A351413 a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.

Original entry on oeis.org

1, 2, 3, 10, 9, 48, 61
Offset: 1

Views

Author

Dan Eilers, Feb 10 2022

Keywords

Comments

In the Latin Stable Marriage Problem of order n, the sum of a man and woman's rankings of each other is n+1. This implies that the men's and women's ranking tables are Latin squares. As a subproblem of the Stable Marriage Problem, Latin instances provide lower bounds for the maximum number of stable matchings in the general problem, such as A005154 and A065982. For sizes 1 to 4, Latin instances provide exact bounds; they are conjectured to provide exact bounds for sizes a power of 2; they provide the best lower bounds known for sizes 6, 10, 12, and 24, of 48, 1000, 6472, and 126112960, respectively.
The next term, a(8), is conjectured to be 268, consistent with A005154. The minimum number of stable matchings for Latin instances of order n is n, and is realized for the cyclic group of order n. The average number of stable matchings is 7 for n=4 (cf. A351430 showing an average of about 1.5 for the general problem), and benefits from avoidance of mutual first choices and more generally the lack of overlap between the men's and women's preferred matchings. The Latin squares of A005154 and A065982 can be interpreted as multiplication tables of groups, n-th powers of the cyclic group C2 and n-th dihedral groups, respectively.
The sequence decreases from a(4)=10 to a(5)=9, in contrast to the corresponding sequence for the general problem, which Thurber showed to be strictly increasing. This has motivated the study of less restrictive subproblems, such as pseudo-Latin squares (A069124, A069156), Latin x Latin instances (A344664, A344665, A343697), instances where participants have different first choices (A343475, A343694, A343695), or instances with unspecified/tied/template rankings (A284458 with only first choices specified).
The sequence is empirically derived, originally based on reduced Latin squares (A000315). There are fewer instances to try using RC-equivalent Latin squares (A123234) instead of reduced Latin squares.

Examples

			Maximal instance of order 2 with 2 stable matchings:
  12
  21
Maximal instance of order 3 with 3 stable matchings:
  123
  231
  312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
  1234
  2143
  3412
  4321
Maximal instance of order 5 with 9 stable matchings:
  12345
  21453
  34512
  45231
  53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
  123456
  214365
  365214
  456123
  541632
  632541
Maximal instance of order 7 with 61 stable matchings:
  1234567
  2316745
  3125476
  4657312
  5743621
  6471253
  7562134
		

References

  • C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].

Crossrefs

Cf. A005154 (powers of 2), A065982 (multiples of 2), A069156 (not necessarily Latin), A000315 (reduced Latin squares), A123234 (RC-equivalent Latin squares).

A351781 a(n) = (n-1)^n*(n-1)!^n.

Original entry on oeis.org

0, 1, 64, 104976, 8153726976, 46656000000000000, 28079296819683655680000000, 2400095991902688012207233433600000000, 37800243186554601452585666030525214621696000000000
Offset: 1

Views

Author

Dan Eilers, Feb 19 2022

Keywords

Comments

a(n) is the number of women's ranking tables in the stable marriage problem that can be paired with a men's ranking table having no two men with the same first choice, without forming any mutual first choices. It has two terms: (n-1)^n from A065440(n), and (n-1)!^n from A091868(n-1). Such men's ranking tables having no two men with the same first choice arise in A343694, A343475, and A344663.
a(n)*A123234 is a useful alternative to A343696 which combines a Latin men's ranking table with an arbitrary women's table, since it gives fewer instances to consider.

Crossrefs

Programs

  • Mathematica
    Table[(n-1)^n*(n-1)!^n,{n,1,9}]

Formula

a(n) = (n-1)^n*(n-1)!^n.
a(n) = A065440(n)*A091868(n-1).
Showing 1-4 of 4 results.