A343702 Numbers that are the sum of five positive cubes in two or more ways.
157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710, 712, 719, 729, 731, 738, 745, 752, 759, 764, 766, 771, 773, 778, 785
Offset: 1
Examples
227 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 so 227 is a term of this sequence.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Select[Range@1000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>1&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,50)]#n for pos in cwr(power_terms,5):#m tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v >= 2])#s for x in range(len(rets)): print(rets[x])
Comments