cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343702 Numbers that are the sum of five positive cubes in two or more ways.

Original entry on oeis.org

157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710, 712, 719, 729, 731, 738, 745, 752, 759, 764, 766, 771, 773, 778, 785
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A048927:
766 = 1^3 + 1^3 + 2^3 + 3^3 + 9^3
= 1^3 + 4^3 + 4^3 + 5^3 + 8^3
= 2^3 + 2^3 + 4^3 + 7^3 + 7^3.
So 766 is a term, but not a term of A048927.

Examples

			227 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3
    = 2^3 + 3^3 + 4^3 + 4^3 + 4^3
so 227 is a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@1000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>1&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 2])#s
    for x in range(len(rets)):
        print(rets[x])