A343704 Numbers that are the sum of five positive cubes in three or more ways.
766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1252, 1259, 1289, 1350, 1368, 1376, 1424, 1431, 1439, 1441, 1457, 1461, 1487, 1492, 1494, 1522, 1529, 1531, 1538, 1548, 1550, 1555, 1568, 1583, 1585, 1587, 1590, 1592, 1593, 1594, 1609, 1611, 1613, 1639
Offset: 1
Examples
827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,50)]#n for pos in cwr(power_terms,5):#m tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v >= 3])#s for x in range(len(rets)): print(rets[x])
Comments