cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343704 Numbers that are the sum of five positive cubes in three or more ways.

Original entry on oeis.org

766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1252, 1259, 1289, 1350, 1368, 1376, 1424, 1431, 1439, 1441, 1457, 1461, 1487, 1492, 1494, 1522, 1529, 1531, 1538, 1548, 1550, 1555, 1568, 1583, 1585, 1587, 1590, 1592, 1593, 1594, 1609, 1611, 1613, 1639
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A343705 at term 20 because 1252 = 1^3+1^3+5^3+5^3+10^3= 1^3+2^3+3^3+6^3+10^3 = 3^3+3^3+7^3+7^3+8^3 = 3^3+4^3+6^3+6^3+9^3. Thus this term is in this sequence but not A343705.

Examples

			827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])#s
    for x in range(len(rets)):
        print(rets[x])