A343708 Numbers that are the sum of two positive cubes in exactly two ways.
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977, 805688, 842751, 885248, 886464
Offset: 1
Examples
13832 is in this sequence because 13832 = 2^3 + 24^3 = 18^3 + 20^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range@70000,Length@Select[PowersRepresentations[#,2,3],FreeQ[#,0]&]==2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,1000)]#n for pos in cwr(power_terms,2):#m tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v == 2])#s for x in range(len(rets)): print(rets[x])
Comments