A343743 a(n) is the largest base in which the order of the Monster group has (47 - n) zeros; alternatively, radicals of maximal powers dividing the order of the Monster group.
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 12, 12, 12, 12, 12, 24, 24, 24, 24, 48, 144, 1440, 1440, 2880, 120960, 1451520, 87091200, 1902071808000, 15184923989114880000, 808017424794512875886459904961710757005754368000000000
Offset: 1
Examples
a(27) = the largest base in which the order of the Monster group has at least (47 - 27) = 20 zeros. This is 2^(floor(46/20)) * 3^(floor(20/20)) = 2^2 * 3 = 12; the remaining terms in the product have exponent 0.
References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.
Crossrefs
Cf. A051161.
Programs
-
Mathematica
f = FactorInteger[MonsterGroupM[] // GroupOrder]; Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* Amiram Eldar, Jul 19 2021 *)
Comments