cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343783 a(n) is the largest primorial number (A002110) which divides phi(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 2, 6, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 2, 6, 2, 2, 2, 2, 6, 6, 6, 2, 2, 30, 2, 2, 2, 6, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 2, 6, 2, 6, 6, 2, 2, 2, 30, 30, 6, 2, 6, 2, 6, 2, 2, 6, 2, 6, 6, 6, 2, 6, 30, 6, 6, 2, 6, 2, 2, 6, 2, 6
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2021

Keywords

Examples

			a(3) = 2 since phi(3) = 2 and 2 = A002110(1).
a(5) = 2 since phi(5) = 4 and 2 = A002110(1) is the largest primorial dividing 4.
a(7) = 6 since phi(7) = 6 and 6 = A002110(2).
		

Crossrefs

Programs

  • Mathematica
    prim[n_] := Times @@ Prime[Range[n]]; gp[n_] := Module[{k = 1}, While[Divisible[n, prim[k]], k++]; prim[k - 1]]; a[n_] := gp[EulerPhi[n]]; Array[a, 100]
  • PARI
    f(n) = my(s=1); forprime(p=2, , if(n%p, return(s), s *= p)); \\ A053589
    a(n) = f(eulerphi(n)); \\ Michel Marcus, May 01 2021

Formula

a(n) = A053589(A000010(n)).
Let pr(n) be the largest prime divisor of a(n) (i.e., a(n) = pr(n)# = A034386(pr(n))). Then pr(n) ~ log(log(n))/log(log(log(n))) on a set of integers of asymptotic density 1 (Pollack and Pomerance, 2020).
From Bernard Schott, May 05 2021: (Start)
a(2n) = a(n) for n>=1.
a(n) = 1 iff n = 1 or n = 2.
a(n) = 2 iff 3 does not divide phi(n) (A088232)
a(n) >= 6 iff 3 divides phi(n) (A066498). (End)