A343790 Number of ordered partitions of an n-set without blocks of size 7.
1, 1, 3, 13, 75, 541, 4683, 47292, 545819, 7086973, 102242283, 1622530933, 28089498891, 526813752973, 10640325166227, 230258631645913, 5315029292965675, 130353994525735677, 3385061859378821547, 92787606222541942477, 2677254928352340708075, 81110818086045534369661
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=7, 0, a(n-j)*binomial(n, j)), j=1..n)) end: seq(a(n), n=0..21); # Alois P. Heinz, Apr 29 2021
-
Mathematica
nmax = 21; CoefficientList[Series[1/(2 + x^7/7! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Formula
E.g.f.: 1 / (2 + x^7/7! - exp(x)).