A343792 Number of ordered partitions of an n-set without blocks of size 9.
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087260, 102247543, 1622632133, 28091557915, 526858128161, 10641337741219, 230283060907913, 5315651289289195, 130370674248854021, 3385532005327322503, 92801507648842580769, 2677685300845992661475, 81124743440296074264381
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=9, 0, a(n-j)*binomial(n, j)), j=1..n)) end: seq(a(n), n=0..21); # Alois P. Heinz, Apr 29 2021
-
Mathematica
nmax = 21; CoefficientList[Series[1/(2 + x^9/9! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Formula
E.g.f.: 1 / (2 + x^9/9! - exp(x)).