cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343756 Number of nondecreasing sequences s1, s2, ..., s_n of powers of 2 such that s_i <= 1 + Sum_{j=1..i-1} s_j.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 45, 102, 232, 528, 1203, 2742, 6252, 14258, 32519, 74173, 169189, 385929, 880337, 2008141, 4580803, 10449377, 23836364, 54373853, 124033933, 282937887, 645419092, 1472287344, 3358484832, 7661154644, 17476122569, 39865383333, 90938296121
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 2: [1,1], [1,2].
a(3) = 4: [1,1,1], [1,1,2], [1,2,2], [1,2,4].
a(4) = 9 : [1,1,1,1], [1,1,1,2], [1,1,1,4], [1,1,2,2], [1,1,2,4], [1,2,2,2], [1,2,2,4], [1,2,4,4], [1,2,4,8].
a(5) = 20: [1,1,1,1,1], [1,1,1,1,2], [1,1,1,1,4], [1,1,1,2,2], [1,1,1,2,4], [1,1,1,4,4], [1,1,1,4,8], [1,1,2,2,2], [1,1,2,2,4], [1,1,2,4,4], [1,1,2,4,8], [1,2,2,2,2], [1,2,2,2,4], [1,2,2,2,8], [1,2,2,4,4], [1,2,2,4,8], [1,2,4,4,4], [1,2,4,4,8], [1,2,4,8,8], [1,2,4,8,16].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
         `if`(t=0, 0, b(n, iquo(t, 2))+b(n-1, t+1)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..38);

A343944 Total number of parts in all partitions of n into powers of 2: p1 <= p2 <= ... <= p_k such that p_i <= 1 + Sum_{j=1..i-1} p_j.

Original entry on oeis.org

0, 1, 2, 5, 7, 12, 15, 29, 35, 50, 58, 86, 98, 128, 143, 225, 251, 318, 350, 453, 495, 603, 653, 846, 914, 1092, 1172, 1419, 1517, 1773, 1886, 2521, 2687, 3130, 3322, 3917, 4147, 4759, 5021, 5909, 6227, 7082, 7442, 8537, 8955, 10076, 10544, 12326, 12898, 14452
Offset: 0

Views

Author

Alois P. Heinz, May 04 2021

Keywords

Examples

			a(5) = 12 = 5+4+3: [1,1,1,1,1], [1,1,1,2], [1,2,2].
a(6) = 15 = 6+5+4: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2].
a(7) = 29 = 7+6+5+4+4+3: [1,1,1,1,1,1,1], [1,1,1,1,1,2], [1,1,1,2,2], [1,2,2,2], [1,1,1,4], [1,2,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<0, 0, (p-> `if`(
           p>n or p>n-p+1, 0, (h-> h+[0, h[1]])(b(n-p, i))))(2^i)+b(n, i-1)))
        end:
    a:= n-> b(n, ilog2(n))[2]:
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 0, {0, 0}, Function[p, If[p > n || p > n - p + 1, {0, 0}, Function[h, h + {0, h[[1]]}][b[n - p, i]]]][2^i] + b[n, i - 1]]];
    a[n_] := b[n, Floor@Log2[n]][[2]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.