cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281688 Expansion of Sum_{i>=0} x^(2^i)/(1 - x^(2^i)) / Product_{j>=0} (1 - x^(2^j)).

Original entry on oeis.org

1, 3, 5, 10, 14, 23, 29, 45, 55, 79, 93, 130, 150, 199, 225, 296, 332, 423, 469, 594, 654, 807, 881, 1085, 1179, 1423, 1537, 1850, 1990, 2355, 2521, 2983, 3185, 3719, 3957, 4618, 4902, 5655, 5985, 6909, 7299, 8343, 8793, 10050, 10574, 11979, 12577, 14260, 14952, 16823, 17609, 19818, 20718, 23155, 24169, 27033
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 27 2017

Keywords

Comments

Total number of parts in all partitions of n into powers of 2 (A000079).
Convolution of A001511 and A018819.

Examples

			a(4) = 10 because we have [4], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 1 + 2 + 3 + 4 = 10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<0, 0, (p->
          `if`(p>n, 0, (h-> h+[0, h[1]])(b(n-p, i))))(2^i)+b(n, i-1)))
        end:
    a:= n-> b(n, ilog2(n))[2]:
    seq(a(n), n=1..56);  # Alois P. Heinz, May 04 2021
  • Mathematica
    Rest[CoefficientList[Series[Sum[x^2^i/(1 - x^2^i), {i, 0, 20}]/Product[1 - x^2^j, {j, 0, 20}], {x, 0, 56}], x]]

Formula

G.f.: Sum_{i>=0} x^(2^i)/(1 - x^(2^i)) / Product_{j>=0} (1 - x^(2^j)).

A343820 Number of partitions of 2n into powers of 2: p1 <= p2 <= ... <= p_k such that p_i <= 1 + Sum_{j=1..i-1} p_j.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 12, 15, 26, 32, 42, 50, 68, 80, 98, 113, 166, 192, 230, 262, 318, 360, 418, 468, 572, 640, 732, 812, 934, 1032, 1160, 1273, 1626, 1792, 2010, 2202, 2482, 2712, 3006, 3268, 3682, 4000, 4402, 4762, 5254, 5672, 6190, 6658, 7492, 8064, 8772, 9412
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2021

Keywords

Examples

			a(2) = 2: [1,1,1,1], [1,1,2].
a(3) = 3: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2].
a(4) = 6: [1,1,1,1,1,1,1,1], [1,1,1,1,1,1,2], [1,1,1,1,2,2], [1,1,2,2,2], [1,1,1,1,4], [1,1,2,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, (p->
          `if`(p>n or p>n-p+1, 0, b(n-p, i)))(2^i)+b(n, i-1)))
        end:
    a:= n-> b(2*n, ilog2(n)+1):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 0, 0, Function[p, If[p > n || p > n - p + 1, 0, b[n - p, i]]][2^i] + b[n, i - 1]]];
    a[n_] := b[2n, BitLength[n] + 1];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

Formula

a(n) is odd <=> n in { A000225 }.
a(2^(n-1)) = A002449(n).
Showing 1-2 of 2 results.