cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344048 T(n, k) = n! * [x^n] exp(k * x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 7, 14, 6, 34, 86, 168, 24, 209, 648, 1473, 2840, 120, 1546, 5752, 14988, 32344, 61870, 720, 13327, 58576, 173007, 414160, 866695, 1649232, 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748
Offset: 0

Views

Author

Peter Luschny, May 08 2021

Keywords

Examples

			Triangle starts:
[0]    1;
[1]    1,      2;
[2]    2,      7,     14;
[3]    6,     34,     86,     168;
[4]   24,    209,    648,    1473,    2840;
[5]  120,   1546,   5752,   14988,   32344,    61870;
[6]  720,  13327,  58576,  173007,  414160,   866695,  1649232;
[7] 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748;
.
Array whose upward read antidiagonals are the rows of the triangle.
n\k   0       1        2          3           4              5
--------------------------------------------------------------------
[0]   1,      2,      14,       168,        2840,         61870, ...
[1]   1,      7,      86,      1473,       32344,        866695, ...
[2]   2,     34,     648,     14988,      414160,      13373190, ...
[3]   6,    209,    5752,    173007,     5876336,     224995745, ...
[4]  24,   1546,   58576,   2228544,    91356544,    4094022230, ...
[5] 120,  13327,  671568,  31636449,  1542401920,   80031878175, ...
[6] 720, 130922, 8546432, 490102164, 28075364096, 1671426609550, ...
		

Crossrefs

T(n, n) = A277373(n). T(2*n, n) = A344049(n). Row sums are A343849.
Cf. A343847.

Programs

  • Maple
    # Rows of the array:
    A := (n, k) -> (n + k)!*LaguerreL(n + k, -k):
    seq(print(seq(simplify(A(n, k)), k = 0..6)), n = 0..6);
    # Columns of the array:
    egf := n -> exp(n*x/(1-x))/(1-x): ser := n -> series(egf(n), x, 16):
    C := (k, n) -> (n + k)!*coeff(ser(k), x, n + k):
    seq(print(seq(C(k, n), n = 0..6)), k=0..6);
  • Mathematica
    T[n_, k_] := (-1)^(n) HypergeometricU[-n, 1,  -k];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}]  // Flatten
    (* Alternative: *)
    T[n_, k_] := n ! LaguerreL[n , -k];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
  • PARI
    T(n, k) = n! * sum(j=0, n, binomial(n, j) * k^j / j!)
    for(n=0, 9, for(k=0, n, print(T(n, k))))
  • SageMath
    # Columns of the array:
    def column(k, len):
        R. = PowerSeriesRing(QQ, default_prec=len+k)
        f = exp(k * x / (1 - x)) / (1 - x)
        return f.egf_to_ogf().list()[k:]
    for col in (0..6): print(column(col, 8))
    # Alternative:
    @cached_function
    def L(n, x):
        if n == 0: return 1
        if n == 1: return 1 - x
        return (L(n-1, x) * (2*n - 1 - x) - L(n-2, x)*(n - 1)) / n
    A344048 = lambda n, k: factorial(n)*L(n, -k)
    print(flatten([[A344048(n, k) for k in (0..n)] for n in (0..7)]))
    

Formula

T(n, k) = (-1)^n*U(-n, 1, -k), where U is the Kummer U function.
T(n, k) = n! * L(n, -k), where L is the Laguerre polynomial function.
T(n, k) = n! * Sum_{j=0..n} binomial(n, j) * k^j / j!.

A343848 a(n) = Sum_{k = 0..n} (n - k)! LaguerreL(n - k, -k).

Original entry on oeis.org

1, 2, 5, 17, 77, 444, 3123, 25933, 248163, 2687200, 32460889, 432482545, 6296217017, 99388128516, 1690073020687, 30788225809509, 597998944638879, 12332575195452440, 269072563350272149, 6190949611140562505, 149789737789559221397, 3801359947725801283196
Offset: 0

Views

Author

Peter Luschny, May 08 2021

Keywords

Crossrefs

Row sums of A343847.

Programs

  • Maple
    A343848List := proc(n) local T; T := proc(n, k) option remember;
    if n = k then return 1 elif n = k+1 then return k+1 fi;
    (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) end:
    seq(add(T(k, j), j = 0..k), k = 0..n) end: A343848List(21);
  • Mathematica
    a[n_] := Sum[(n - k)! LaguerreL[n - k, -k], {k, 0, n}];
    Table[a[n], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, (n - k)!*sum(j=0, n - k, binomial(n - k, j) * k^j / j!))
    for(n=0, 21, print(a(n)))

Formula

a(n) = Sum_{k=0..n} (n - k)! * Sum_{j=0..n-k} binomial(n - k, j) * k^j / j!.
Showing 1-2 of 2 results.