cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343847 T(n, k) = (n - k)! * [x^(n-k)] exp(k*x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 7, 3, 1, 24, 34, 14, 4, 1, 120, 209, 86, 23, 5, 1, 720, 1546, 648, 168, 34, 6, 1, 5040, 13327, 5752, 1473, 286, 47, 7, 1, 40320, 130922, 58576, 14988, 2840, 446, 62, 8, 1, 362880, 1441729, 671568, 173007, 32344, 4929, 654, 79, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 07 2021

Keywords

Examples

			Triangle starts:
0:     1;
1:     1,      1;
2:     2,      2,     1;
3:     6,      7,     3,     1;
4:    24,     34,    14,     4,    1;
5:   120,    209,    86,    23,    5,   1;
6:   720,   1546,   648,   168,   34,   6,  1;
7:  5040,  13327,  5752,  1473,  286,  47,  7,  1;
8: 40320, 130922, 58576, 14988, 2840, 446, 62,  8,  1;
.
Array whose upward read antidiagonals are the rows of the triangle.
n\k   0       1       2        3        4         5        6
-----------------------------------------------------------------
0:    1,      1,      1,       1,       1,        1,        1, ...
1:    1,      2,      3,       4,       5,        6,        7, ...
2:    2,      7,     14,      23,      34,       47,       62, ...
3:    6,     34,     86,     168,     286,      446,      654, ...
4:   24,    209,    648,    1473,    2840,     4929,     7944, ...
5:  120,   1546,   5752,   14988,   32344,    61870,   108696, ...
6:  720,  13327,  58576,  173007,  414160,   866695,  1649232, ...
7: 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, ...
		

Crossrefs

Row sums: A343848. T(2*n, n) = A277373(n). Variant: A289192.
Cf. A021009 (Laguerre polynomials), A344048.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n = k then return 1 elif n = k+1 then return k+1 fi;
    (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) end:
    seq(print(seq(T(n ,k), k = 0..n)), n = 0..7);
  • Mathematica
    T[n_, k_] := (-1)^(n - k) HypergeometricU[k - n, 1, -k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Alternative: *)
    TL[n_, k_] := (n - k)! LaguerreL[n - k, -k];
    Table[TL[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • PARI
    T(n, k) = (n - k)!*sum(j=0, n - k, binomial(n - k, j) * k^j / j!)
    for(n=0, 9, for(k=0, n, print(T(n, k))))
    
  • SageMath
    # Columns of the array.
    def column(k, len):
        R. = PowerSeriesRing(QQ, default_prec=len)
        f = exp(k * x / (1 - x)) / (1 - x)
        return f.egf_to_ogf().list()
    for col in (0..6): print(column(col, 20))

Formula

T(n, k) = (-1)^(n - k)*U(k - n, 1, -k), where U is the Kummer U function.
T(n, k) = (n - k)! * L(n - k, -k), where L is the Laguerre polynomial function.
T(n, k) = (n - k)! * Sum_{j = 0..n - k} binomial(n - k, j) k^j / j!.
T(n, k) = (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) for n - k >= 2.

A344049 a(n) = KummerU(-2*n, 1, -n).

Original entry on oeis.org

1, 7, 648, 173007, 91356544, 80031878175, 104921038236672, 192311632290456007, 469591293625846038528, 1473442955416649975287959, 5776758846811567983984640000, 27673221072138317786331655146207, 159045755874087839794327707061321728, 1080096259061106512089015938295879551727
Offset: 0

Views

Author

Peter Luschny, May 08 2021

Keywords

Crossrefs

a(n) = A344048(2*n, n).

Programs

  • Maple
    egf := n -> exp(n*x/(1-x))/(1-x): ser := n -> series(egf(n), x, 32):
    a := n -> (2*n)!*coeff(ser(n), x, 2*n): seq(a(n), n = 0..13);
  • Mathematica
    a[n_] := HypergeometricU[-2 n, 1, -n];
    Table[a[n], {n, 0, 13}]
  • PARI
    a(n) = (2*n)! * sum(j=0, 2*n, binomial(2*n, j) * n^j / j!)
    for(n=0, 13, print(a(n)))
  • SageMath
    @cached_function
    def L(n, x):
        if n == 0: return 1
        if n == 1: return 1 - x
        return (L(n-1, x) * (2*n-1-x) - L(n-2, x)*(n-1))/n
    A344049 = lambda n: factorial(2*n)*L(2*n, -n)
    print([A344049(n) for n in (0..13)])
    

Formula

a(n) = (2*n)! * LaguerreL(2*n, -n).
a(n) = (2*n)! * [x^(2*n)] exp(n*x/(1-x))/(1-x).
a(n) = (2*n)! * Sum_{k=0..2*n} binomial(2*n, k)*n^k / k!.
a(n) ~ 2^(4*n + 1) * n^(2*n) / (sqrt(3) * exp(n)). - Vaclav Kotesovec, May 09 2021
Showing 1-2 of 2 results.