A343861 Coefficient triangle of generalized Laguerre polynomials n!*L(n,n,x) (rising powers of x).
1, 2, -1, 12, -8, 1, 120, -90, 18, -1, 1680, -1344, 336, -32, 1, 30240, -25200, 7200, -900, 50, -1, 665280, -570240, 178200, -26400, 1980, -72, 1, 17297280, -15135120, 5045040, -840840, 76440, -3822, 98, -1, 518918400, -461260800, 161441280, -29352960, 3057600, -188160, 6720, -128, 1
Offset: 0
Examples
The triangle begins: 1; 2, -1; 12, -8, 1; 120, -90, 18, -1; 1680, -1344, 336, -32, 1; 30240, -25200, 7200, -900, 50, -1; 665280, -570240, 178200, -26400, 1980, -72, 1;
Links
Crossrefs
Programs
-
Magma
[(-1)^k*Factorial(n-k)*Binomial(n,k)*Binomial(2*n, n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
Mathematica
T[n_, k_] := (-1)^k * (2*n)! * Binomial[n, k]/(k + n)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
PARI
T(n, k) = (-1)^k*(2*n)!*binomial(n,k)/(k+n)!;
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, n));
-
SageMath
def A343861(n,k): return (-1)^k*factorial(n-k)*binomial(n,k)*binomial(2*n,n+k) flatten([[A343861(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022