cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0

Views

Author

Seiichi Manyama, May 02 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,       1,         1,           1, ...
  2,   2,     2,       2,         2,           2, ...
  3,   5,     9,      17,        33,          65, ...
  4,  16,    82,     460,      2674,       15796, ...
  5,  65,  1313,   29441,    684545,    16175105, ...
  6, 326, 32826, 3680126, 427840626, 50547203126, ...
		

Crossrefs

Columns 0..3 give A000027(n+1), A000522, A006040, A217284.
Main diagonal gives A336247.
Cf. A291556.

Programs

  • Mathematica
    T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, (n!/j!)^k);

Formula

T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.