A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, ... 3, 5, 9, 17, 33, 65, ... 4, 16, 82, 460, 2674, 15796, ... 5, 65, 1313, 29441, 684545, 16175105, ... 6, 326, 32826, 3680126, 427840626, 50547203126, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..59, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
PARI
T(n, k) = sum(j=0, n, (n!/j!)^k);
Formula
T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.