A343874 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotational symmetry.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 5, 13, 4, 1, 0, 1, 10, 43, 36, 7, 1, 0, 1, 14, 129, 204, 85, 9, 1, 0, 1, 22, 327, 980, 735, 171, 13, 1, 0, 1, 30, 761, 3876, 5145, 2109, 313, 16, 1, 0, 1, 43, 1619, 13596, 29715, 20610, 5213, 528, 21, 1
Offset: 0
Examples
Array begins: ===================================================== n\k | 0 1 2 3 4 5 6 7 ----+------------------------------------------------ 0 | 1 0 0 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 3 5 10 14 22 30 ... 3 | 1 3 13 43 129 327 761 1619 ... 4 | 1 4 36 204 980 3876 13596 42636 ... 5 | 1 7 85 735 5145 29715 148561 657511 ... 6 | 1 9 171 2109 20610 164502 1124382 6744582 ... 7 | 1 13 313 5213 67769 717509 6457529 50732669 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
U(n,s)={(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)))/4} T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}