A343915 a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).
1, 2, 4, 5, 7, 8, 14, 28, 42, 57, 71, 85, 142, 285, 428, 571, 714, 857, 1428, 2857, 4285, 5714, 7142, 8571, 14285, 28571, 42857, 57142, 71428, 85714, 142857, 285714, 428571, 571428, 714285, 857142, 1428571, 2857142, 4285714, 5714285, 7142857, 8571428, 14285714
Offset: 0
Examples
Every 6th term of the sequence starts with the same digits: 1, 2, 4, 5, 7, 8, 14, 28, 42, 57, 71, 85, 142, 285, 428, 571, 714, 857, 1428, 2857, 4285, 5714, 7142, 8571, 14285, 28571, 42857, 57142, 71428, 85714, 142857, 285714, 428571, 571428, 714285, 857142, 1428571, 2857142, 4285714, 5714285, 7142857, 8571428, 14285714, 28571428, 42857142, 57142857, 71428571, 85714285, ...
Links
- Konstantin Kutsenko, Python module used to generate sequences from different numbers
Programs
-
PARI
a(n) = {((n % 6)+1)*10^(n\6+1)\7} \\ Andrew Howroyd, May 05 2021
Formula
a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).
Comments