cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343915 a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 14, 28, 42, 57, 71, 85, 142, 285, 428, 571, 714, 857, 1428, 2857, 4285, 5714, 7142, 8571, 14285, 28571, 42857, 57142, 71428, 85714, 142857, 285714, 428571, 571428, 714285, 857142, 1428571, 2857142, 4285714, 5714285, 7142857, 8571428, 14285714
Offset: 0

Views

Author

Konstantin Kutsenko, May 04 2021

Keywords

Comments

Every digit string (after the decimal point) in the decimal expansion of 1/7 = 0.142857142857142857... forms a term of this sequence.

Examples

			Every 6th term of the sequence starts with the same digits:
  1,        2,        4,        5,        7,        8,
  14,       28,       42,       57,       71,       85,
  142,      285,      428,      571,      714,      857,
  1428,     2857,     4285,     5714,     7142,     8571,
  14285,    28571,    42857,    57142,    71428,    85714,
  142857,   285714,   428571,   571428,   714285,   857142,
  1428571,  2857142,  4285714,  5714285,  7142857,  8571428,
  14285714, 28571428, 42857142, 57142857, 71428571, 85714285,
  ...
		

Crossrefs

Programs

  • PARI
    a(n) = {((n % 6)+1)*10^(n\6+1)\7} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).