cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Konstantin Kutsenko

Konstantin Kutsenko's wiki page.

Konstantin Kutsenko has authored 2 sequences.

A343915 a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 14, 28, 42, 57, 71, 85, 142, 285, 428, 571, 714, 857, 1428, 2857, 4285, 5714, 7142, 8571, 14285, 28571, 42857, 57142, 71428, 85714, 142857, 285714, 428571, 571428, 714285, 857142, 1428571, 2857142, 4285714, 5714285, 7142857, 8571428, 14285714
Offset: 0

Author

Konstantin Kutsenko, May 04 2021

Keywords

Comments

Every digit string (after the decimal point) in the decimal expansion of 1/7 = 0.142857142857142857... forms a term of this sequence.

Examples

			Every 6th term of the sequence starts with the same digits:
  1,        2,        4,        5,        7,        8,
  14,       28,       42,       57,       71,       85,
  142,      285,      428,      571,      714,      857,
  1428,     2857,     4285,     5714,     7142,     8571,
  14285,    28571,    42857,    57142,    71428,    85714,
  142857,   285714,   428571,   571428,   714285,   857142,
  1428571,  2857142,  4285714,  5714285,  7142857,  8571428,
  14285714, 28571428, 42857142, 57142857, 71428571, 85714285,
  ...
		

Crossrefs

Programs

  • PARI
    a(n) = {((n % 6)+1)*10^(n\6+1)\7} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).

A343833 Prime numbers of the form floor((j/7)*10^k) where 1 <= j <= 6 and k >= 1.

Original entry on oeis.org

2, 5, 7, 71, 571, 857, 2857, 28571, 1428571, 71428571, 7142857142857, 571428571428571, 1428571428571428571428571, 28571428571428571428571428571, 7142857142857142857142857142857, 2857142857142857142857142857142857, 42857142857142857142857142857142857142857
Offset: 1

Author

Konstantin Kutsenko, May 01 2021

Keywords

Crossrefs