A343941 Number of strict integer partitions of 2n with reverse-alternating sum 4.
0, 0, 1, 0, 1, 2, 3, 3, 4, 5, 7, 8, 10, 11, 14, 15, 18, 20, 23, 25, 29, 31, 35, 38, 42, 45, 50, 53, 58, 62, 67, 71, 77, 81, 87, 92, 98, 103, 110, 115, 122, 128, 135, 141, 149, 155, 163, 170, 178, 185, 194, 201, 210, 218, 227, 235, 245, 253, 263, 272, 282, 291, 302
Offset: 0
Keywords
Examples
The a(2) = 1 through a(12) = 10 strict partitions (empty column indicated by dot, A..D = 10..13): 4 . 521 532 543 653 763 873 983 A93 BA3 631 642 752 862 972 A82 B92 CA2 741 851 961 A71 B81 C91 DA1 64321 65421 65432 76432 76542 75321 75431 76531 86541 76421 86431 87432 86321 87421 87531 97321 97431 98421 A8321 The a(2) = 1 through a(8) = 5 partitions covering an initial interval: 1111 . 32111 33211 33321 333221 543211 543321 322111 332211 3322211 3332221 5432211 3222111 32222111 33222211 33322221 322222111 332222211 3222222111
Crossrefs
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==4&]],{n,0,30,2}]
Extensions
More terms from Bert Dobbelaere, Jun 12 2021
Comments