A000097 Number of partitions of n if there are two kinds of 1's and two kinds of 2's.
1, 2, 5, 9, 17, 28, 47, 73, 114, 170, 253, 365, 525, 738, 1033, 1422, 1948, 2634, 3545, 4721, 6259, 8227, 10767, 13990, 18105, 23286, 29837, 38028, 48297, 61053, 76926, 96524, 120746, 150487, 187019, 231643, 286152, 352413, 432937, 530383, 648245
Offset: 0
Examples
a(3) = 9 because we have 3, 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'. From _Gus Wiseman_, Jun 22 2021: (Start) The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with exactly 2 odd parts: (1,1) (3,1) (3,3) (5,3) (2,1,1) (5,1) (7,1) (3,2,1) (3,3,2) (4,1,1) (4,3,1) (2,2,1,1) (5,2,1) (6,1,1) (3,2,2,1) (4,2,1,1) (2,2,2,1,1) The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with alternating sum 2: (2) (3,1) (4,2) (5,3) (2,1,1) (2,2,2) (3,3,2) (3,2,1) (4,3,1) (3,1,1,1) (3,2,2,1) (2,1,1,1,1) (4,2,1,1) (2,2,2,1,1) (3,2,1,1,1) (3,1,1,1,1,1) (2,1,1,1,1,1,1) (End)
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Christian Gutschwager, The skew diagram poset and components of skew characters, arXiv:1104.0008 [math.CO], 2011.
- Christian Gutschwager, Reduced Kronecker products which are multiplicity free or contain only a few components, Eur. J. Combinat. 31 (2010) 1996-2005. doi:10.1016/j.ejc.2010.05.008.
- J. P. Robinson, Edges in the poset of partitions of an integer, J. Combin. Theory Ser. A, 48 (1988), 236-238.
- N. J. A. Sloane, Transforms
Crossrefs
First differences are in A024786.
The case of reverse-alternating sum 1 or alternating sum 0 is A000041.
The case of reverse-alternating sum -1 or alternating sum 1 is A000070.
The strict case is A096914.
The case of reverse-alternating sum 2 is A120452.
The case of reverse-alternating sum -2 is A344741.
A001700 counts compositions with alternating sum 2.
A035363 counts partitions into even parts.
A058696 counts partitions of 2n.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Cf. A006330, A027187, A239830, A306145, A343941, A344607, A344608, A344619, A344650, A344651, A344740.
Shift of A093695.
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n->`if`(n<3,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
CoefficientList[Series[1/((1 - x) (1 - x^2) Product[1 - x^k, {k, 1, 100}]), {x, 0, 100}], x] (* Ben Branman, Mar 07 2012 *) etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[If[# < 3, 2, 1]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *) (1/((1 - x) (1 - x^2) QPochhammer[x]) + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *) Table[Length@IntegerPartitions[n,All,Join[{1,2},Range[n]]],{n,0,15}] (* Robert Price, Jul 28 2020 and Jun 21 2021 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m]; T[, ] = 0; a[n_] := T[n + 3, 2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *) ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[IntegerPartitions[n],ats[#]==2&]],{n,0,30,2}] (* Gus Wiseman, Jun 21 2021 *)
-
PARI
my(x = 'x + O('x^66)); Vec( 1/((1-x)*(1-x^2)*eta(x)) ) \\ Joerg Arndt, Apr 29 2013
Formula
Euler transform of 2 2 1 1 1 1 1...
G.f.: 1/( (1-x) * (1-x^2) * Product_{k>=1} (1-x^k) ).
a(n) = Sum_{j=0..floor(n/2)} A000070(n-2*j), n>=0.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 35*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Aug 18 2015, extended Nov 05 2016
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 04 2004
Edited by Emeric Deutsch, Mar 23 2005
More terms from Franklin T. Adams-Watters, Mar 20 2006
Edited by Charles R Greathouse IV, Apr 20 2010
Comments