A343979 Composite numbers m such that lambda(m) = lambda(D_{m-1}), where lambda(n) is the Carmichael function of n (A002322) and D_k is the denominator (A027642) of Bernoulli number B_k.
5615659951, 36901698733, 55723044637, 776733036121, 2752403727511, 7725145165297, 14475486778537, 15723055492417, 22824071195485, 29325910221631, 54669159894469, 62086332981241, 125685944708905, 180225455689481, 298620660945331, 335333122310629, 426814989321721
Offset: 1
Keywords
Programs
-
Mathematica
c = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[d_] := If[PrimeQ[d + 1], d, 1]; Select[c, LCM @@ (FactorInteger[#][[;; , 1]] - 1) == LCM @@ (q /@ Divisors[# - 1]) &]
-
PARI
A002322(n) = lcm(znstar(n)[2]); \\ From A002322 A173614(n) = lcm(apply(p->p-1, factor(n)[, 1])); A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m)); isA343979(n) = ((n>1) && !isprime(n) && (!((n-1)%A002322(n))) && A173614(n)==A346467(n)); \\ Antti Karttunen, Jul 22 2021
Comments