A343983 Numbers k such that Sum_{j|k} j^j == 1 (mod k).
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 72, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Divisible[DivisorSum[n, #^# &] - 1, n]; Select[Range[260], q] (* Amiram Eldar, May 06 2021 *)
-
PARI
isok(n) = sumdiv(n, d, Mod(d, n)^d)==1;
-
Python
from itertools import count, islice from sympy import divisors def A343983_gen(): # generator of terms yield 1 for k in count(1): if sum(pow(j,j,k) for j in divisors(k,generator=True)) % k == 1: yield k A343983_list = list(islice(A343983_gen(),30)) # Chai Wah Wu, Jun 19 2022
Comments