cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344029 Numbers included in A343983 but not in A074583.

Original entry on oeis.org

72, 2025, 78447, 5922181, 84238825, 1141011175
Offset: 1

Views

Author

Seiichi Manyama, May 07 2021

Keywords

Examples

			If n is in A074583, n can be expressed as n = p^e (p>=e) using the prime p.
On the other hand, the terms of this sequence are factorized as follows.
72 = 2^3 * 3^2.
2025 = 3^4 * 5^2.
78447 = 3 * 79 * 331.
5922181 = 71 * 239 * 349.
84238825 = 5^2 * 11 * 17 * 37 * 487.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(f=factor(n)); sumdiv(n, d, Mod(d, n)^d)==1 && n>1 && !(#f~==1 && f[1, 1]>=f[1, 2]);

Extensions

a(6) from Seiichi Manyama, Aug 01 2023

A074583 Numbers k such that sopfr(k) = S(k), where sopfr = A001414 and S = A002034.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Jason Earls, Aug 24 2002

Keywords

Comments

These are the prime powers p^e with e <= p. - Reinhard Zumkeller, Dec 15 2003
Complement to A192135 with respect to A000961;

Crossrefs

Subsequence of A000961; A000040, A000430, and A051674 are subsequences.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a074583 n = a074583_list !! (n-1)
    a074583_list = 1 : f (singleton 2) a000040_list where
      f s ps'@(p:p':ps)
        | m == p      = p : f (insert (p*p) $ insert p' s') (p':ps)
        | m < spf^spf = m : f (insert (m*spf) s') ps'
        | otherwise   = m : f s' ps'
          where spf = a020639 m  -- smallest prime factor of m, cf. A020639
                (m, s') = deleteFindMin s
    -- Simpler version:
    a074583_list = map a000961 a192188_list
    -- Reinhard Zumkeller, Jun 05 2011, Jun 26 2011
    
  • Mathematica
    sopfr[n_] := Total[Times @@@ FactorInteger[n]];
    S[n_] := Module[{m = 1}, While[!IntegerQ[m!/n], m++]; m];
    Select[Range[1000], sopfr[#] == S[#]&] (* Jean-François Alcover, Nov 09 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); n==1 || (#f~==1 && f[1, 1]>=f[1, 2]); \\ Seiichi Manyama, May 07 2021

Formula

a(n) = A000961(A192188(n)); A095874(a(n)) = A192188(n). - Reinhard Zumkeller, Jun 26 2011
Showing 1-2 of 2 results.