cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A384915 The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e <= p (A074583).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Examples

			a(4) = 2 since 4 has 2 factorizations: 2^1 * 2^1 and 2^2, with exponents 1 and 2 that are <= 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Length[IntegerPartitions[e, p]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    T(n, k)=my(s); forpart(v=n, s++, , k); s \\ Charles R Greathouse IV at A026820
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, T(f[i,2], f[i,1]));}

Formula

Multiplicative with a(p^e) = A026820(e, p).
a(n) >= A384916(n), with equality if and only if n is in A048103.

A344029 Numbers included in A343983 but not in A074583.

Original entry on oeis.org

72, 2025, 78447, 5922181, 84238825, 1141011175
Offset: 1

Views

Author

Seiichi Manyama, May 07 2021

Keywords

Examples

			If n is in A074583, n can be expressed as n = p^e (p>=e) using the prime p.
On the other hand, the terms of this sequence are factorized as follows.
72 = 2^3 * 3^2.
2025 = 3^4 * 5^2.
78447 = 3 * 79 * 331.
5922181 = 71 * 239 * 349.
84238825 = 5^2 * 11 * 17 * 37 * 487.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(f=factor(n)); sumdiv(n, d, Mod(d, n)^d)==1 && n>1 && !(#f~==1 && f[1, 1]>=f[1, 2]);

Extensions

a(6) from Seiichi Manyama, Aug 01 2023

A192135 Prime powers p^e with p < e.

Original entry on oeis.org

8, 16, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625, 14348907
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Crossrefs

Complement to A074583 with respect to A000961.

Programs

  • Maple
    A192135 := proc(nmax) local s ,i,p,e ; s := {} ; for i from 1 do p := ithprime(i) ; if p^(p+1) > nmax then break; end if; for e from p+1 do if p^e > nmax then break; end if; s := s union {p^e} ; end do: end do: sort(s) ; end proc:
    A192135(20000000) ; # R. J. Mathar, Jul 09 2011
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p+1, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)

Formula

a(n) = A000961(A192187(n)).
A095874(a(n)) = A192187(n).
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^p*(p-1)) = 0.26859872089648243789... . - Amiram Eldar, Apr 14 2025

A192188 Positions of prime powers p^e with e <= p within A000961.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Formula

Complement of A192187.
a(n) = A095874(A074583(n)).
A000961(a(n)) = A074583(n).

A343983 Numbers k such that Sum_{j|k} j^j == 1 (mod k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 72, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Seiichi Manyama, May 06 2021

Keywords

Comments

This sequence is different from A074583.

Crossrefs

Programs

  • Mathematica
    q[n_] := Divisible[DivisorSum[n, #^# &] - 1, n]; Select[Range[260], q] (* Amiram Eldar, May 06 2021 *)
  • PARI
    isok(n) = sumdiv(n, d, Mod(d, n)^d)==1;
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A343983_gen(): # generator of terms
        yield 1
        for k in count(1):
            if sum(pow(j,j,k) for j in divisors(k,generator=True)) % k == 1:
                yield k
    A343983_list = list(islice(A343983_gen(),30)) # Chai Wah Wu, Jun 19 2022

A073045 Nonprime solutions to sopfr(n) = S(n), where sopfr(n) = A001414 and S(n) = A002034.

Original entry on oeis.org

4, 9, 25, 27, 49, 121, 125, 169, 289, 343, 361, 529, 625, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641, 16129, 16807
Offset: 1

Views

Author

Jason Earls, Aug 24 2002

Keywords

Examples

			sopfr(9) = S(9) = 6 and 6 is composite, so 9 is a term.
		

Crossrefs

Programs

  • PARI
    {for(n=1,17000,if(!isprime(n),s=0; fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]*fac[i,2]); m=1; p=1; while(p%n>0,m++; p=p*m); if(s==m,print1(n,","))))}

Extensions

Edited and extended by Klaus Brockhaus, Aug 26 2002
Showing 1-6 of 6 results.