cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343986 Numbers that are the sum of four positive cubes in exactly five ways.

Original entry on oeis.org

5105, 5131, 5616, 5859, 6435, 7777, 9315, 9737, 9793, 10017, 10250, 10458, 10936, 10962, 11000, 11060, 11088, 11592, 11664, 11781, 12168, 12229, 12285, 12320, 12385, 12392, 12707, 13384, 13734, 13832, 13904, 14183, 14239, 14833, 15176, 15596, 15624, 15752, 15759, 15778, 16093, 16289, 16354, 16480, 16569
Offset: 1

Views

Author

David Consiglio, Jr., May 06 2021

Keywords

Comments

Differs from A343987 at term 6 because 6883 = 2^3 + 2^3 + 2^3 + 19^3 = 2^3 + 5^3 + 15^3 + 15^3 = 3^3 + 8^3 + 8^3 + 18^3 = 4^3 + 11^3 + 14^3 + 14^3 = 5^3 + 11^3 + 11^3 + 16^3 = 8^3 + 9^3 + 9^3 + 17^3.

Examples

			5616 is a term because 5616 = 1^3 + 8^3 + 12^3 + 15^3 = 2^3 + 8^3 + 10^3 + 16^3 = 4^3 + 4^3 + 14^3 + 14^3 = 4^3 + 5^3 + 11^3 + 16^3 = 8^3 + 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])