A359997 Irregular triangle read by rows: T(n,k) is the number of directed cycles of length k in the 2-Fibonacci digraph of order n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 4, 3, 5, 4, 7, 6, 6, 6, 4, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 5, 5, 6, 8, 10, 15, 20, 20, 24, 23, 19, 18, 20, 30, 30, 36, 36, 16, 0, 28, 28, 28
Offset: 1
Examples
Triangle begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---+----------------------------------------------------- 1 | 1 1 2 | 1 1 1 3 | 1 1 1 1 4 | 1 1 1 1 2 1 1 5 | 1 1 1 1 2 2 1 1 2 2 2 6 | 1 1 1 1 2 2 4 3 5 4 7 6 6 6 4 4 2 2
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..320 (rows n = 1..10; row 10 computed by Bert Dobbelaere)
- C. Dalfó and M. A. Fiol, On d-Fibonacci digraphs, arXiv:1909.06766 [math.CO], 2019.
Crossrefs
Programs
-
Python
import networkx as nx from collections import Counter def F(n): return nx.DiGraph(((0,0),(0,1),(1,0))) if n == 1 else nx.line_graph(F(n-1)) def A359997_row(n): a = Counter(len(c) for c in nx.simple_cycles(F(n))) return [a[k] for k in range(1,max(a)+1)]
Formula
T(n,k) = A006206(k) for n >= k-1.
Comments