cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A379711 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis triacontahedron.

Original entry on oeis.org

2, 8, 7, 7, 8, 3, 6, 6, 1, 0, 4, 6, 1, 2, 2, 4, 2, 8, 0, 9, 4, 3, 4, 5, 0, 4, 5, 4, 8, 1, 7, 9, 9, 1, 7, 7, 5, 4, 7, 4, 9, 4, 2, 8, 6, 6, 5, 4, 0, 6, 4, 7, 0, 3, 4, 5, 6, 8, 2, 6, 3, 2, 1, 6, 9, 8, 3, 8, 3, 1, 7, 6, 7, 0, 9, 4, 3, 8, 4, 5, 9, 9, 1, 5, 6, 6, 8, 4, 9, 7
Offset: 1

Views

Author

Paolo Xausa, Dec 31 2024

Keywords

Comments

The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.8778366104612242809434504548179917754749428665406...
		

Crossrefs

Cf. A379708 (surface area), A379709 (volume), A379710 (inradius), A379388 (midradius).
Cf. A344075, A377995 and A377996 (dihedral angles of a truncated icosidodecahedron (great rhombicosidodecahedron)).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(-179 - 24*Sqrt[5])/241], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DisdyakisTriacontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((-179 - 24*sqrt(5))/241) = arccos((-179 - 24*A002163)/241).

A378977 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.

Original entry on oeis.org

2, 8, 0, 3, 2, 1, 7, 8, 5, 6, 0, 8, 4, 8, 0, 5, 9, 6, 2, 1, 0, 3, 4, 4, 9, 3, 2, 6, 4, 8, 7, 7, 2, 5, 3, 2, 8, 1, 1, 5, 2, 6, 5, 9, 8, 8, 0, 3, 5, 4, 0, 1, 2, 6, 9, 8, 4, 7, 0, 1, 7, 0, 6, 0, 5, 1, 6, 8, 7, 6, 1, 6, 4, 9, 4, 7, 8, 1, 9, 2, 7, 5, 1, 4, 3, 8, 7, 6, 5, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			2.8032178560848059621034493264877253281152659880354...
		

Crossrefs

Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378976 (midradius).
Cf. A137218 and A344075 (dihedral angles of a truncated dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-3*(8 + 5*Sqrt[5])/61], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TriakisIcosahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-3*(8 + 5*sqrt(5))/61) = arccos(-3*(8 + 5*A002163)/61).

A379136 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentakis dodecahedron.

Original entry on oeis.org

2, 7, 3, 5, 2, 5, 4, 7, 6, 1, 4, 9, 0, 3, 3, 4, 6, 6, 1, 9, 8, 9, 8, 5, 6, 0, 1, 8, 3, 9, 3, 4, 9, 5, 7, 9, 2, 7, 1, 6, 9, 6, 9, 3, 3, 9, 6, 5, 5, 6, 8, 5, 7, 4, 2, 9, 3, 0, 4, 0, 0, 5, 9, 0, 1, 3, 0, 2, 9, 3, 0, 5, 7, 6, 0, 6, 9, 2, 0, 0, 0, 3, 1, 1, 4, 6, 4, 5, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 17 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			2.7352547614903346619898560183934957927169693...
		

Crossrefs

Cf. A379132 (surface area), A379133 (volume), A379134 (inradius), A379135 (midradius).
Cf. A236367 and A344075 (dihedral angles of a truncated icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(80 + 9*Sqrt[5])/109], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["PentakisDodecahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(80 + 9*sqrt(5))/109) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals arccos(-(80 + 9*sqrt(5))/109) = arccos(-(80 + 9*A002163)/109).

A386530 Decimal expansion of the largest dihedral angle, in radians, in an elongated pentagonal rotunda (Johnson solid J_21).

Original entry on oeis.org

2, 9, 5, 2, 8, 8, 2, 1, 2, 2, 8, 0, 6, 2, 3, 1, 1, 6, 8, 6, 8, 1, 5, 0, 8, 9, 8, 3, 0, 9, 6, 8, 9, 4, 7, 1, 1, 8, 6, 0, 3, 9, 8, 5, 3, 3, 6, 9, 8, 2, 4, 6, 3, 4, 2, 9, 9, 1, 1, 4, 9, 7, 3, 4, 3, 2, 1, 8, 7, 0, 6, 8, 6, 6, 3, 0, 9, 1, 1, 1, 7, 1, 0, 1, 9, 0, 6, 7, 9, 6
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face (at the edge where the prism and rotunda parts of the solid meet).
Also the analogous dihedral angle in Johnson solids J_40-J_43.

Examples

			2.9528821228062311686815089830968947118603985336982...
		

Crossrefs

Cf. other J_21 dihedral angles: A019669, A228824, A344075, A387191.
Cf. A384213 (J_21 volume), A179637 (J_21 surface area - 10).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[2*(5 + Sqrt[5])/15]], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J21", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt(2*(5 + sqrt(5))/15)) = arccos(-sqrt(2*(5 + A002163)/15)).

A387191 Decimal expansion of the second largest dihedral angle, in radians, in an elongated pentagonal rotunda (Johnson solid J_21).

Original entry on oeis.org

2, 6, 7, 7, 9, 4, 5, 0, 4, 4, 5, 8, 8, 9, 8, 7, 1, 2, 2, 2, 4, 8, 3, 8, 7, 1, 5, 1, 8, 1, 8, 2, 8, 8, 4, 8, 2, 1, 6, 8, 6, 3, 2, 3, 4, 5, 0, 8, 8, 9, 8, 5, 5, 5, 7, 1, 6, 4, 0, 1, 1, 5, 0, 3, 5, 8, 7, 6, 1, 8, 5, 4, 2, 1, 2, 0, 4, 6, 7, 2, 9, 3, 3, 2, 7, 4, 3, 4, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between a square face and a pentagonal face.
Also one of the dihedral angles in Johnson solids J_40-J_43, J_72-J_75, J_77-J_79 and J_82.

Examples

			2.677945044588987122248387151818288482168632345...
		

Crossrefs

Cf. other J_21 dihedral angles: A019669, A228824, A344075, A386530.
Cf. A384213 (J_21 volume), A179637 (J_21 surface area - 10).

Programs

  • Mathematica
    First[RealDigits[Pi/2 + ArcTan[2], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J21", "DihedralAngles"]], 2], 10, 100]]

Formula

Equals Pi/2 + arctan(2) = A019669 + A105199.
Equals arccos(-2*sqrt(5)/5) = arccos(-A010476/5).

A386853 Decimal expansion of the dihedral angle, in radians, between the 10-gonal face and a triangular face in a pentagonal rotunda (Johnson solid J_6).

Original entry on oeis.org

1, 3, 8, 2, 0, 8, 5, 7, 9, 6, 0, 1, 1, 3, 3, 4, 5, 4, 9, 4, 5, 0, 1, 8, 7, 2, 9, 1, 4, 5, 7, 1, 4, 3, 2, 6, 9, 7, 6, 1, 8, 1, 3, 8, 3, 4, 0, 1, 0, 6, 9, 3, 4, 3, 2, 5, 0, 3, 6, 7, 7, 4, 3, 8, 1, 6, 7, 9, 6, 2, 4, 8, 3, 4, 8, 7, 8, 0, 6, 6, 7, 1, 7, 0, 5, 0, 5, 0, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 06 2025

Keywords

Examples

			1.38208579601133454945018729145714326976181383401...
		

Crossrefs

Cf. A179593 (volume), A179637 (surface area).
Cf. other J_6 dihedral angles: A105199, A344075.

Programs

  • Mathematica
    First[RealDigits[ArcCos[Sqrt[(5 - Sqrt[20])/15]], 10, 100]] (* or *)
    First[RealDigits[RankedMin[Union[PolyhedronData["J6", "DihedralAngles"]], 2], 10, 100]]
  • PARI
    acos(sqrt((5 - 2*sqrt(5))/15)) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arccos(sqrt((5 - 2*sqrt(5))/15)) = arccos(sqrt((5 - A010476)/15)).
Showing 1-6 of 6 results.