cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344097 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+4,4).

Original entry on oeis.org

1, 5, 25, 120, 505, 2027, 7740, 28345, 100355, 344815, 1154130, 3773955, 12085125, 37971645, 117258755, 356386016, 1067364240, 3153415695, 9198749905, 26516197720, 75586609016, 213212467695, 595482274750, 1647568369230, 4517987288720, 12284672226583, 33133931688645
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 4, 4], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 4, 4], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A174002(d) ) * a(n-k).