A344115 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not one-to-one functions.
1, 2, 14, 5, 58, 506, 12, 244, 4072, 65512, 27, 1004, 32708, 1048456, 33554312, 58, 4066, 262024, 16776856, 1073741104, 68719476016, 121, 16342, 2096942, 268434616, 34359735848, 4398046506064, 562949953416272, 248, 65480, 16776880, 4294965616, 1099511621056
Offset: 1
Examples
For T(2,2): the number of relations is 2^4 and the number of one-to-one functions is 2, so 2^4 - 2 = 14 and thus T(2,2) = 14. Triangle T(n,k) begins: 1; 2, 14; 5, 58, 506; 12, 244, 4072, 65512; 27, 1004, 32708, 1048456, 33554312;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1275 (rows n = 1..50, flattened)
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141.
Crossrefs
Programs
-
Mathematica
Table[2^(n*k) - k!/(k - n)!, {k, 10}, {n, k}] // Flatten
Formula
T(n,k) = 2^(n*k) - k!/(k-n)!, k >= n.
Comments