A344136 Number of linear intervals in the Tamari lattices.
1, 3, 12, 49, 198, 792, 3146, 12441, 49062, 193154, 759696, 2986458, 11737820, 46134090, 181350630, 713046345, 2804421510, 11033453970, 43424181240, 170965500030, 673354218420, 2652994345560, 10456457024052, 41227321016394
Offset: 1
Keywords
Examples
All 3 intervals in the lattice of cardinality 2 are linear. Among 13 intervals in the pentagon, only one is not linear.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1663
- Clément Chenevière, Linear Intervals in the Tamari, Dyck and alt-Tamari Lattices, arXiv:2209.00418 [math.CO], 2022.
- Clément Chenevière, Enumerative study of intervals in lattices of Tamari type, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See p. 151.
Crossrefs
Cf. A000260.
Programs
-
Mathematica
Array[(3/2) Binomial[2 #, #]*(#^2 - # + 2)/(# + 2)/(# + 1) &, 24] (* Michael De Vlieger, Sep 09 2022 *)
-
Sage
[3/2*binomial(2*n,n)*(n**2-n+2)/(n+2)/(n+1) for n in range(1,30)]
Formula
a(n) = (3/2)*binomial(2*n, n)*(n^2 - n + 2)/(n + 2)/(n + 1).
a(n) = binomial(2*n, n)/(n + 1) + binomial(2*n-1, n-2) + 2*binomial(2*n-1, n-3).
a(n) ~ (3/2) * 4^n * (1 - 33/(8*n)) / sqrt(n*Pi). - Peter Luschny, May 10 2021
a(n) = a(n-1)*2*(2*n - 1)*(n^2 - n + 2)/((n + 2)*(n^2 - 3*n + 4)) for n > 1. - Chai Wah Wu, May 13 2021
Comments