cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A344228 a(n) = binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1).

Original entry on oeis.org

3, 17, 84, 393, 1778, 7866, 34254, 147433, 628914, 2663934, 11219728, 47033322, 196393044, 817338580, 3391858530, 14040986985, 57998364690, 239112756630, 984126777480, 4044255577230, 16597080112860, 68027923573740
Offset: 1

Views

Author

F. Chapoton, May 12 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the Cambrian lattices of type B_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 34254 for n = 7.

Examples

			For B_2, among the 18 intervals in the hexagon-shaped lattice, only one is not linear.
		

Crossrefs

Cf. A344136 for the type A, A344191 for a similar sequence.

Programs

  • Maple
    a := n -> 3*(2*n^3 + n - 1)*2^(2*n - 2)*binomial(n - 3/2, -1/2)/((n + 1)*n):
    seq(a(n), n = 1..22);  # Peter Luschny, May 12 2021
  • Mathematica
    Array[3 (2 #^3 + # - 1)*2^(2 # - 2)*Binomial[# - 3/2, -1/2]/(# (# + 1)) &, 22] (* Michael De Vlieger, Jan 17 2024 *)
  • Sage
    def a(n):
        return binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1)

Formula

From Peter Luschny, May 12 2021: (Start)
a(n) = 3*(2*n^3 + n - 1)*2^(2*n - 2)*binomial(n - 3/2, -1/2)/((n + 1)*n).
a(n) = [x^n] (15*x - 24*x^2 + 8*x^3 - 2 + (1 - 4*x)^(3/2)*(2 - 3*x))/(2*(1 - 4*x)^(3/2)*x).
a(n) ~ 4^(n-2)*(24*n - 15)/sqrt(Pi*n). (End)
a(n) = a(n-1)*2*(2*n - 3)*(2*n^3 + n - 1)/((n + 1)*(2*n^3 - 6*n^2 + 7*n - 4)) for n > 1. - Chai Wah Wu, May 13 2021

A344191 a(n) = Catalan(n) * (n^2 + 2) / (n + 2).

Original entry on oeis.org

1, 1, 3, 11, 42, 162, 627, 2431, 9438, 36686, 142766, 556206, 2169268, 8469060, 33096195, 129454695, 506793270, 1985612310, 7785510810, 30548406570, 119944382220, 471241577820, 1852521913710, 7286586193926, 28675561428972, 112905199767052, 444752335104252
Offset: 0

Views

Author

F. Chapoton, May 11 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in Pallo's comb posets. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 36686 for n = 9.

Examples

			All 3 intervals in the poset of cardinality 2 are linear. All 11 intervals in the poset of cardinality 5 are linear.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n = 0, 1, a(n-1)*(2*(2*n-1)*(n^2+2))/((n+2)*(n^2-2*n+3))):
    seq(a(n), n = 0..19); # Peter Luschny, May 11 2021
  • Mathematica
    a[n_] := CatalanNumber[n] (n^2 + 2) / (n + 2);
    Table[a[n], { n, 0, 23}] (* Peter Luschny, May 11 2021 *)
  • PARI
    a(n) = (binomial(2*n,n)/(n+1))*((n^2 + 2)/(n + 2)); \\ Michel Marcus, May 11 2021
  • Sage
    def a(n):
        return catalan_number(n)+sum(2**(n-k)/factorial(k-2)*(n-k+4)/(n+2)*prod(n+i for i in range(2, k)) for k in range(2, n+1))
    
  • Sage
    def a(n): return catalan_number(n) + binomial(2*n, n-2)
    print([a(n) for n in range(24)]) # Peter Luschny, May 11 2021
    

Formula

a(n) = Catalan(n) + (1/(n + 2))*Sum_{k=2..n}((2^(n - k)*(n - k + 4)/(k - 2)!)* Product_{i=2..k-1}(n + i)).
From Peter Luschny, May 11 2021: (Start)
a(n) = [x^n] ((2*x + sqrt(1 - 4*x) - 1)*(3*x - 1))/(2*sqrt(1 - 4*x)*x^2).
a(n) = n! * [x^n] exp(2*x)*(BesselI(0, 2*x) - BesselI(1, 2*x) + BesselI(2, 2*x)).
a(n) = a(n-1)*(2*(2*n - 1)*(n^2 + 2))/((n + 2)*(n^2 - 2*n + 3)) for n >= 1.
a(n) = Catalan(n) + binomial(2*n, n-2) = A000108(n) + A002694(n).
a(n) ~ (2^(2*n - 3)*(8*n - 25)) / (sqrt(Pi)*n^(3/2)). (End)
a(n) = A121686(n) / 2. - Hugo Pfoertner, May 11 2021

A344321 a(n) = 2^(2*n - 5)*binomial(n-5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) for n >= 2 and otherwise 1.

Original entry on oeis.org

1, 1, 8, 49, 246, 1157, 5248, 23256, 101398, 436865, 1865136, 7906054, 33319388, 139754994, 583859968, 2430991670, 10092510630, 41794856985, 172699266480, 712220712390, 2932169392020, 12052941519030, 49475929052160, 202838118604680
Offset: 0

Views

Author

F. Chapoton, May 15 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the Cambrian lattices of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term a(8) = 101398.
The term a(3) = 49 is the same as the 49 appearing in A344136.

Crossrefs

Cf. A344136 for the type A, A344228 for the type B.
Cf. also A344191, A344216 for similar sequences.
Cf. A344400 and A344401 for an alternative approach.
Cf. A007531.

Programs

  • Maple
    a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;
    seq(a(n), n = 0..23); # Peter Luschny, May 16 2021
  • Sage
    def a(n):
        if n < 2: return 1
        if n == 2: return 8
        return (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1)+6*(n-2)*binomial(2*n-4,n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2,n-1)+sum(2*binomial(k,n-1)*(n+1+k) for k in range(n-1,2*n-5))
    print([a(n) for n in range(24)])

Formula

a(n) = (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1) + 6*(n-2)*binomial(2*n-4,n-2) + (n-1)*(3*n-8)/(2*(2*n-3))*binomial(2*n-2,n-1) + 2 Sum_{k=1..2n-6} binomial(k,n-1)*(n+1+k) for n >= 3.
a(n) = A344401(n) / A007531(n+3) for n >= 2. - Peter Luschny, May 17 2021

Extensions

Better name from Peter Luschny, May 16 2021

A344216 a(n) = n!*((n+1)/2 + 2*Sum_{k=2..n-1}(n-k)/(k+1)).

Original entry on oeis.org

1, 3, 16, 104, 768, 6336, 57888, 581472, 6379200, 75977280, 977045760, 13499930880, 199537067520, 3142504512000, 52546707763200, 929908914278400, 17366044153651200, 341336836618444800, 7044417438363648000
Offset: 1

Views

Author

F. Chapoton, May 13 2021

Keywords

Comments

Conjecture: a(n) is the number of linear intervals in the weak order on the symmetric group S_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to a(7) = 57888.

Examples

			For S_3, among the 17 intervals in the hexagon-shaped lattice, only the full lattice is not linear.
		

Crossrefs

Cf. A344136, A344191, A344228 for similar sequences.
Cf. A007767 for all intervals in the weak order on S_n.

Programs

  • Maple
    a := n -> (1/2)*n!*(4*(n + 1)*harmonic(n) - 9*n + 3):
    # Or:
    egf := (3 - 8*x - 4*ln(1 - x))/(2*(x - 1)^2):
    ser := series(egf, x, 24): a := n -> n!*coeff(ser, x, n):
    seq(a(n), n=1..19); # Peter Luschny, May 13 2021
  • Mathematica
    Join[{1}, RecurrenceTable[{(n - 3) a[n] == (2 n^2 - 5 n - 1) a[n - 1] - (n^3 - 3 n^2 + 2 n) a[n - 2], a[2] == 3, a[3] == 16}, a, {n, 2, 19}]] (* Peter Luschny, May 13 2021 *)
  • PARI
    a(n) = n!*((n+1)/2+2*sum(k=2, n-1, (n-k)/(k+1))); \\ Michel Marcus, May 13 2021
  • Sage
    def a(n):
        return factorial(n)*((n+1)/2+2*sum((n-k)/(k+1) for k in range(2, n)))
    

Formula

From Peter Luschny, May 13 2021: (Start)
a(n) = (1/2) * n! * (4 * (n + 1) * H(n) - 9*n + 3), where H(n) are the harmonic numbers H(n) = A001008(n)/A002805(n).
a(n) = n! * [x^n] (3 - 8*x - 4*log(1 - x))/(2*(x - 1)^2).
a(n) = ((2*n^2 - 5*n - 1)*a(n-1) - (n^3 - 3*n^2 + 2*n)*a(n-2))/(n - 3) for n >= 4. (End)

A344717 a(n) = (3n - 9/2 - 1/n + 6/(n+1))*binomial(2n-2,n-1).

Original entry on oeis.org

6, 34, 169, 791, 3576, 15807, 68783, 295867, 1261468, 5341128, 22487906, 94244294, 393439840, 1637091585, 6792664635, 28115240595, 116120791380, 478689505140, 1969993524510, 8095052323410, 33218808108720, 136148925337230, 557389537873974, 2279607910207326
Offset: 2

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the tilting posets of type B_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 295867 for n = 9.

Crossrefs

For the tilting posets of type A, see A344136.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(3 # - 9/2 - 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 24, 2] (* Michael De Vlieger, Jan 17 2024, after Sage *)
  • Sage
    def a(n):
        return (3*n-9/2-1/n+6/(n+1))*binomial(2*n-2,n-1)

A344728 a(n) = (9*n/4 - 51/8 - 5/(16*n-24) + 1/n + 6/(n+1))*binomial(2*n-2,n-1).

Original entry on oeis.org

12, 79, 419, 2036, 9435, 42449, 187187, 813592, 3497988, 14912910, 63151022, 265958200, 1114981465, 4656455685, 19383036675, 80456688240, 333146169840, 1376479675890, 5676426414810, 23369047049400, 96060414949590
Offset: 3

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: a(n) is the number of linear intervals in the tilting posets of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 187187 for n = 9.

Crossrefs

For the tilting posets of types A and B, see A344136, A344717.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(9/4 # - 51/8 - 5/8/(2 # - 3) + 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 21, 3] (* Michael De Vlieger, Jan 17 2024 *)
  • PARI
    a(n) = (9*n/4-51/8-5/(16*n-24)+1/n+6/(n+1))*binomial(2*n-2,n-1) \\ Felix Fröhlich, May 27 2021
  • Sage
    def a(n):
        return (9/4*n-51/8-5/8/(2*n-3)+1/n+6/(n+1))*binomial(2*n-2,n-1)
    

A384133 Triangle read by rows: T(n,k) is the number of linear intervals of height k in the Tamari lattice Tam_n (0 <= k < n).

Original entry on oeis.org

1, 2, 1, 5, 5, 2, 14, 21, 12, 2, 42, 84, 56, 14, 2, 132, 330, 240, 72, 16, 2, 429, 1287, 990, 330, 90, 18, 2, 1430, 5005, 4004, 1430, 440, 110, 20, 2, 4862, 19448, 16016, 6006, 2002, 572, 132, 22, 2, 16796, 75582, 63648, 24752, 8736, 2730, 728, 156, 24, 2
Offset: 1

Views

Author

Ludovic Schwob, May 20 2025

Keywords

Comments

An interval is linear of height k if it is isomorphic to the total order on k+1 elements.

Examples

			Triangle begins:
   1;
   2,    1;
   5,    5,    2;
  14,   21,   12,    2;
  42,   84,   56,   14,    2;
 132,  330,  240,   72,   16,    2;
 ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=If[k==0, Binomial[2*n,n]/(n+1), If[k==1, Binomial[2*n-1,n-2], 2*Binomial[2*n-k,n-k-1]]]; Table[T[n,k],{n,10},{k,0,n-1}]//Flatten (* Stefano Spezia, May 26 2025 *)

Formula

Row sums give A344136.
T(n,0) = C(2*n,n)/(n+1), T(n,1) = C(2*n-1,n-2) and T(n,k) = 2*C(2*n-k,n-k-1) if k>1.
Showing 1-7 of 7 results.