cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344321 a(n) = 2^(2*n - 5)*binomial(n-5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) for n >= 2 and otherwise 1.

Original entry on oeis.org

1, 1, 8, 49, 246, 1157, 5248, 23256, 101398, 436865, 1865136, 7906054, 33319388, 139754994, 583859968, 2430991670, 10092510630, 41794856985, 172699266480, 712220712390, 2932169392020, 12052941519030, 49475929052160, 202838118604680
Offset: 0

Views

Author

F. Chapoton, May 15 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the Cambrian lattices of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term a(8) = 101398.
The term a(3) = 49 is the same as the 49 appearing in A344136.

Crossrefs

Cf. A344136 for the type A, A344228 for the type B.
Cf. also A344191, A344216 for similar sequences.
Cf. A344400 and A344401 for an alternative approach.
Cf. A007531.

Programs

  • Maple
    a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;
    seq(a(n), n = 0..23); # Peter Luschny, May 16 2021
  • Sage
    def a(n):
        if n < 2: return 1
        if n == 2: return 8
        return (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1)+6*(n-2)*binomial(2*n-4,n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2,n-1)+sum(2*binomial(k,n-1)*(n+1+k) for k in range(n-1,2*n-5))
    print([a(n) for n in range(24)])

Formula

a(n) = (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1) + 6*(n-2)*binomial(2*n-4,n-2) + (n-1)*(3*n-8)/(2*(2*n-3))*binomial(2*n-2,n-1) + 2 Sum_{k=1..2n-6} binomial(k,n-1)*(n+1+k) for n >= 3.
a(n) = A344401(n) / A007531(n+3) for n >= 2. - Peter Luschny, May 17 2021

Extensions

Better name from Peter Luschny, May 16 2021

A344717 a(n) = (3n - 9/2 - 1/n + 6/(n+1))*binomial(2n-2,n-1).

Original entry on oeis.org

6, 34, 169, 791, 3576, 15807, 68783, 295867, 1261468, 5341128, 22487906, 94244294, 393439840, 1637091585, 6792664635, 28115240595, 116120791380, 478689505140, 1969993524510, 8095052323410, 33218808108720, 136148925337230, 557389537873974, 2279607910207326
Offset: 2

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the tilting posets of type B_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 295867 for n = 9.

Crossrefs

For the tilting posets of type A, see A344136.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(3 # - 9/2 - 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 24, 2] (* Michael De Vlieger, Jan 17 2024, after Sage *)
  • Sage
    def a(n):
        return (3*n-9/2-1/n+6/(n+1))*binomial(2*n-2,n-1)

A344728 a(n) = (9*n/4 - 51/8 - 5/(16*n-24) + 1/n + 6/(n+1))*binomial(2*n-2,n-1).

Original entry on oeis.org

12, 79, 419, 2036, 9435, 42449, 187187, 813592, 3497988, 14912910, 63151022, 265958200, 1114981465, 4656455685, 19383036675, 80456688240, 333146169840, 1376479675890, 5676426414810, 23369047049400, 96060414949590
Offset: 3

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: a(n) is the number of linear intervals in the tilting posets of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 187187 for n = 9.

Crossrefs

For the tilting posets of types A and B, see A344136, A344717.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(9/4 # - 51/8 - 5/8/(2 # - 3) + 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 21, 3] (* Michael De Vlieger, Jan 17 2024 *)
  • PARI
    a(n) = (9*n/4-51/8-5/(16*n-24)+1/n+6/(n+1))*binomial(2*n-2,n-1) \\ Felix Fröhlich, May 27 2021
  • Sage
    def a(n):
        return (9/4*n-51/8-5/8/(2*n-3)+1/n+6/(n+1))*binomial(2*n-2,n-1)
    
Showing 1-3 of 3 results.