cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344400 a(n) = [x^n] 6*(8*x^3 + 3*x + 1) / (1 - 4*x)^(7/2).

Original entry on oeis.org

6, 102, 1008, 7860, 53340, 330372, 1918224, 10615176, 56602260, 293032740, 1481004096, 7337198232, 35743534008, 171641101800, 814046047200, 3819148459920, 17747499595140, 81776562767460, 373968175442400, 1698587342436600, 7667851012141320, 34422129328312440
Offset: 0

Views

Author

Peter Luschny, May 16 2021

Keywords

Comments

The sequence and its sister sequence A344401 are related to Frédéric Chapoton's sequences A344228 and A344321, as described in the linked remark.

Crossrefs

Programs

  • Maple
    aList := proc(len) local gf, ser;
       gf := 6*(8*x^3 + 3*x + 1) / (1 - 4*x)^(7/2):
       ser := series(gf, x, len+2): seq(coeff(ser, x, n), n = 0..len) end:
    aList(21);

Formula

a(n) = A344228(n+1)*(n+1)*(n+2). - John Keith, May 23 2021

A344401 a(n) = [x^n] 24*(-40*x^4 + 49*x^3 - 15*x^2 + 13*x + 2) / (1 - 4*x)^(9/2).

Original entry on oeis.org

48, 1176, 14760, 138840, 1102080, 7814016, 51104592, 314542800, 1846484640, 10435991280, 57176069808, 305224906896, 1593937712640, 8168132011200, 41177443370400, 204627619798560, 1004073535314720, 4871589672747600, 23398711748319600, 111369179635837200
Offset: 0

Views

Author

Peter Luschny, May 16 2021

Keywords

Comments

The sequence and its sister sequence A344400 are related to Frédéric Chapoton's sequences A344228 and A344321, as described in the linked remark.

Crossrefs

Programs

  • Maple
    aList := proc(len) local gf, ser;
       gf := 24*(-40*x^4 + 49*x^3 - 15*x^2 + 13*x + 2) / (1 - 4*x)^(9/2):
       ser := series(gf, x, len+2): seq(coeff(ser, x, n), n = 0..len) end:
    aList(19);
  • PARI
    a(n) = if(n==0, 48, 6*(3*n + 4)*(2*n^3 + 9*n^2 + 13*n + 4)*binomial(2*n-1, n)) \\ Andrew Howroyd, May 28 2021

Formula

a(n) = 6*(3*n + 4)*(2*n^3 + 9*n^2 + 13*n + 4)*binomial(2*n-1, n) for n>=1. - John Keith, May 28 2021

A344717 a(n) = (3n - 9/2 - 1/n + 6/(n+1))*binomial(2n-2,n-1).

Original entry on oeis.org

6, 34, 169, 791, 3576, 15807, 68783, 295867, 1261468, 5341128, 22487906, 94244294, 393439840, 1637091585, 6792664635, 28115240595, 116120791380, 478689505140, 1969993524510, 8095052323410, 33218808108720, 136148925337230, 557389537873974, 2279607910207326
Offset: 2

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the tilting posets of type B_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 295867 for n = 9.

Crossrefs

For the tilting posets of type A, see A344136.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(3 # - 9/2 - 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 24, 2] (* Michael De Vlieger, Jan 17 2024, after Sage *)
  • Sage
    def a(n):
        return (3*n-9/2-1/n+6/(n+1))*binomial(2*n-2,n-1)

A344728 a(n) = (9*n/4 - 51/8 - 5/(16*n-24) + 1/n + 6/(n+1))*binomial(2*n-2,n-1).

Original entry on oeis.org

12, 79, 419, 2036, 9435, 42449, 187187, 813592, 3497988, 14912910, 63151022, 265958200, 1114981465, 4656455685, 19383036675, 80456688240, 333146169840, 1376479675890, 5676426414810, 23369047049400, 96060414949590
Offset: 3

Views

Author

F. Chapoton, May 27 2021

Keywords

Comments

Conjecture: a(n) is the number of linear intervals in the tilting posets of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 187187 for n = 9.

Crossrefs

For the tilting posets of types A and B, see A344136, A344717.
For the Cambrian lattices of types A, B and D, see A344136, A344228, A344321.
For similar sequences, see A344191, A344216.

Programs

  • Mathematica
    Array[(9/4 # - 51/8 - 5/8/(2 # - 3) + 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 21, 3] (* Michael De Vlieger, Jan 17 2024 *)
  • PARI
    a(n) = (9*n/4-51/8-5/(16*n-24)+1/n+6/(n+1))*binomial(2*n-2,n-1) \\ Felix Fröhlich, May 27 2021
  • Sage
    def a(n):
        return (9/4*n-51/8-5/8/(2*n-3)+1/n+6/(n+1))*binomial(2*n-2,n-1)
    
Showing 1-4 of 4 results.