A344228
a(n) = binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1).
Original entry on oeis.org
3, 17, 84, 393, 1778, 7866, 34254, 147433, 628914, 2663934, 11219728, 47033322, 196393044, 817338580, 3391858530, 14040986985, 57998364690, 239112756630, 984126777480, 4044255577230, 16597080112860, 68027923573740
Offset: 1
For B_2, among the 18 intervals in the hexagon-shaped lattice, only one is not linear.
-
a := n -> 3*(2*n^3 + n - 1)*2^(2*n - 2)*binomial(n - 3/2, -1/2)/((n + 1)*n):
seq(a(n), n = 1..22); # Peter Luschny, May 12 2021
-
Array[3 (2 #^3 + # - 1)*2^(2 # - 2)*Binomial[# - 3/2, -1/2]/(# (# + 1)) &, 22] (* Michael De Vlieger, Jan 17 2024 *)
-
def a(n):
return binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1)
A344321
a(n) = 2^(2*n - 5)*binomial(n-5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) for n >= 2 and otherwise 1.
Original entry on oeis.org
1, 1, 8, 49, 246, 1157, 5248, 23256, 101398, 436865, 1865136, 7906054, 33319388, 139754994, 583859968, 2430991670, 10092510630, 41794856985, 172699266480, 712220712390, 2932169392020, 12052941519030, 49475929052160, 202838118604680
Offset: 0
-
a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;
seq(a(n), n = 0..23); # Peter Luschny, May 16 2021
-
def a(n):
if n < 2: return 1
if n == 2: return 8
return (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1)+6*(n-2)*binomial(2*n-4,n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2,n-1)+sum(2*binomial(k,n-1)*(n+1+k) for k in range(n-1,2*n-5))
print([a(n) for n in range(24)])
A344216
a(n) = n!*((n+1)/2 + 2*Sum_{k=2..n-1}(n-k)/(k+1)).
Original entry on oeis.org
1, 3, 16, 104, 768, 6336, 57888, 581472, 6379200, 75977280, 977045760, 13499930880, 199537067520, 3142504512000, 52546707763200, 929908914278400, 17366044153651200, 341336836618444800, 7044417438363648000
Offset: 1
For S_3, among the 17 intervals in the hexagon-shaped lattice, only the full lattice is not linear.
Cf.
A007767 for all intervals in the weak order on S_n.
-
a := n -> (1/2)*n!*(4*(n + 1)*harmonic(n) - 9*n + 3):
# Or:
egf := (3 - 8*x - 4*ln(1 - x))/(2*(x - 1)^2):
ser := series(egf, x, 24): a := n -> n!*coeff(ser, x, n):
seq(a(n), n=1..19); # Peter Luschny, May 13 2021
-
Join[{1}, RecurrenceTable[{(n - 3) a[n] == (2 n^2 - 5 n - 1) a[n - 1] - (n^3 - 3 n^2 + 2 n) a[n - 2], a[2] == 3, a[3] == 16}, a, {n, 2, 19}]] (* Peter Luschny, May 13 2021 *)
-
a(n) = n!*((n+1)/2+2*sum(k=2, n-1, (n-k)/(k+1))); \\ Michel Marcus, May 13 2021
-
def a(n):
return factorial(n)*((n+1)/2+2*sum((n-k)/(k+1) for k in range(2, n)))
A034275
a(n) = f(n,n-2) where f is given in A034261.
Original entry on oeis.org
1, 3, 14, 65, 294, 1302, 5676, 24453, 104390, 442442, 1864356, 7818538, 32657884, 135950700, 564306840, 2336457645, 9652643910, 39800950530, 163830074100, 673327275390, 2763494696820, 11327881630260, 46381659765480, 189711966348450, 775232392541724, 3165127107345252
Offset: 1
-
a[n_] := Binomial[2*n-2,n-1] * (n^2-n+1) / n; Array[a, 25] (* Amiram Eldar, Sep 04 2025 *)
-
a(n) = binomial(2*n-2,n-1)/n * (n^2-n+1); \\ Michel Marcus, Jun 24 2021
-
[binomial(2*n-2,n-1)//n * (n**2-n+1) for n in range(1,8)]
A344717
a(n) = (3n - 9/2 - 1/n + 6/(n+1))*binomial(2n-2,n-1).
Original entry on oeis.org
6, 34, 169, 791, 3576, 15807, 68783, 295867, 1261468, 5341128, 22487906, 94244294, 393439840, 1637091585, 6792664635, 28115240595, 116120791380, 478689505140, 1969993524510, 8095052323410, 33218808108720, 136148925337230, 557389537873974, 2279607910207326
Offset: 2
For the tilting posets of type A, see
A344136.
-
Array[(3 # - 9/2 - 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 24, 2] (* Michael De Vlieger, Jan 17 2024, after Sage *)
-
def a(n):
return (3*n-9/2-1/n+6/(n+1))*binomial(2*n-2,n-1)
A344728
a(n) = (9*n/4 - 51/8 - 5/(16*n-24) + 1/n + 6/(n+1))*binomial(2*n-2,n-1).
Original entry on oeis.org
12, 79, 419, 2036, 9435, 42449, 187187, 813592, 3497988, 14912910, 63151022, 265958200, 1114981465, 4656455685, 19383036675, 80456688240, 333146169840, 1376479675890, 5676426414810, 23369047049400, 96060414949590
Offset: 3
-
Array[(9/4 # - 51/8 - 5/8/(2 # - 3) + 1/# + 6/(# + 1))*Binomial[2 # - 2, # - 1] &, 21, 3] (* Michael De Vlieger, Jan 17 2024 *)
-
a(n) = (9*n/4-51/8-5/(16*n-24)+1/n+6/(n+1))*binomial(2*n-2,n-1) \\ Felix Fröhlich, May 27 2021
-
def a(n):
return (9/4*n-51/8-5/8/(2*n-3)+1/n+6/(n+1))*binomial(2*n-2,n-1)
Showing 1-6 of 6 results.
Comments