cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344223 a(n) = Sum_{k=1..n} tau(gcd(k,n)^n), where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 4, 6, 16, 10, 72, 14, 64, 45, 180, 22, 600, 26, 336, 360, 256, 34, 1620, 38, 1600, 672, 792, 46, 4752, 175, 1092, 378, 3080, 58, 36960, 62, 1024, 1584, 1836, 1680, 17136, 74, 2280, 2184, 12960, 82, 97020, 86, 7480, 9450, 3312, 94, 37536, 441, 16900, 3672, 10400, 106, 40824, 3960, 25200
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0,GCD[k,n]^n],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n)^n));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^n));
    
  • PARI
    a(n) = n*sumdiv(n, d, n^omega(d)/d);

Formula

a(n) = n * A344226(n).
a(n) = Sum_{d|n} phi(n/d) * tau(d^n).
a(n) = n * Sum_{d|n} n^omega(d) / d.
If p is prime, a(p) = 2*p.