A344221 a(n) = Sum_{k=1..n} tau(gcd(k,n)^3), where tau(n) is the number of divisors of n.
1, 5, 6, 13, 8, 30, 10, 29, 21, 40, 14, 78, 16, 50, 48, 61, 20, 105, 22, 104, 60, 70, 26, 174, 43, 80, 66, 130, 32, 240, 34, 125, 84, 100, 80, 273, 40, 110, 96, 232, 44, 300, 46, 182, 168, 130, 50, 366, 73, 215, 120, 208, 56, 330, 112, 290, 132, 160, 62, 624, 64, 170, 210, 253, 128, 420
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Sum[DivisorSigma[0,GCD[k,n]^3],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *) f[p_, e_] := (p^e*(p + 2) - 3)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
-
PARI
a(n) = sum(k=1, n, numdiv(gcd(k, n)^3));
-
PARI
a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^3));
-
PARI
a(n) = n*sumdiv(n, d, 3^omega(d)/d);
Formula
a(n) = Sum_{d|n} phi(n/d) * tau(d^3).
a(n) = n * Sum_{d|n} 3^omega(d) / d.
If p is prime, a(p) = 3 + p.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p^e*(p + 2) - 3)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 2/p^2) = 1.8019184198... . (End)