A344224 a(n) = Sum_{k=1..n} tau(gcd(k,n)^gcd(k,n)), where tau(n) is the number of divisors of n.
1, 4, 6, 14, 10, 61, 14, 44, 33, 143, 22, 410, 26, 257, 292, 128, 34, 852, 38, 1050, 536, 581, 46, 2352, 95, 791, 162, 1978, 58, 30545, 62, 352, 1240, 1307, 1388, 6918, 74, 1613, 1700, 6264, 82, 80823, 86, 4698, 4866, 2321, 94, 12416, 189, 5790, 2836, 6490, 106, 10881, 3284, 12032, 3512, 3623
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Sum[DivisorSigma[0,GCD[k,n]^(GCD[k,n])],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *)
-
PARI
a(n) = sum(k=1, n, numdiv(gcd(k, n)^gcd(k,n)));
-
PARI
a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^d));
Formula
a(n) = Sum_{d|n} phi(n/d) * tau(d^d).
If p is prime, a(p) = 2*p.