cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344235 Triangle T from the array A(k, n) giving the sums of k+1 consecutive squares starting with n^2, read as upwards antidiagonals, for k >= 0 and n >= 0.

Original entry on oeis.org

0, 1, 1, 5, 5, 4, 14, 14, 13, 9, 30, 30, 29, 25, 16, 55, 55, 54, 50, 41, 25, 91, 91, 90, 86, 77, 61, 36, 140, 140, 139, 135, 126, 110, 85, 49, 204, 204, 203, 199, 190, 174, 149, 113, 64, 285, 285, 284, 280, 271, 255, 230, 194, 145, 81, 385, 385, 384, 380, 371, 355, 330, 294, 245, 181, 100
Offset: 0

Views

Author

Wolfdieter Lang, May 27 2021

Keywords

Comments

Motivated by a proposal from Charlie Marion.

Examples

			The array A(k, n) begins:
k \ n    0   1   2   3   4   5    6    7    8    9   10 ...
-----------------------------------------------------------
0:       0   1   4   9  16  25   36   49   64   81  100 ...
1:       1   5  13  25  41  61   85  113  145  181  221 ...
2:       5  14  29  50  77 110  149  194  245  302  365 ...
3:      14  30  54  86 126 174  230  294  366  446  534 ...
4:      30  55  90 135 190 255  330  415  510  615  730 ...
5:      55  91 139 199 271 355  451  559  679  811  955 ...
6:      91 140 203 280 371 476  595  728  875 1036 1211 ...
7:     140 204 284 380 492 620  764  924 1100 1292 1500 ...
8:     204 285 384 501 636 789  960 1149 1356 1581 1824 ...
9:     285 385 505 645 805 985 1185 1405 1645 1905 2185 ...
...
-----------------------------------------------------------
The triangle T(m, n) begins:
m \ n   0   1   2   3   4   5   6   7   8  9 ...
-----------------------------------------------------------
0:      0
1:      1   1
2:      5   5   4
3:     14  14  13   9
4:     30  30  29  25  16
5:     55  55  54  50  41  25
6:     91  91  90  86  77  61  36
7:    140 140 139 135 126 110  85  49
8:    204 204 203 199 190 174 149 113  64
9:    285 285 284 280 271 255 230 194 145 81
...
----------------------------------------------------------
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd ed.; Addison-Wesley, 1994, pp. 283-290.

Crossrefs

Rows of array A, diagonals of T: A000290, A001844, A005918(n+1), A027575, A027578, A027865, A260637, A276026, ...
Columns of array A and T (without leading 0s): A000330, A000330(n+1), A168559(n+1), ...

Formula

A(k, n) = Sum_{j=0..k} (n+j)^2, for k >= 0, n >= 0.
A(k, n) = Sum_{j=0..n+k} j^2 - (2*n-1)*n*(n-1)/3! = S(n+k) - (2*n-1)*n*(n-1)/3!, with S(n+k) = (1/3)*Sum_{j=0..2} binomial(3, j)*B_j*(n+k+1)^(3-j), with the Bernoulli numbers A027641 / A027642 (see Graham et al., pp. 283-290).
Recurrence for sequence of row k: A(k, n) = A(k, n-1) + (k+1)*(2*n + k - 1), n >= 1, with A(k, 0) = (2*k+1)*(k+1)*k/3!, for k >= 0.