cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344237 Numbers that are the sum of five fourth powers in exactly two ways.

Original entry on oeis.org

260, 275, 340, 515, 884, 1555, 2595, 2660, 2675, 2690, 2705, 2755, 2770, 2835, 2930, 2945, 3010, 3185, 3299, 3314, 3379, 3554, 3923, 3970, 3985, 4050, 4115, 4145, 4160, 4210, 4290, 4355, 4400, 4465, 4594, 4769, 4834, 5075, 5090, 5155, 5265, 5330, 5395, 5440, 5505, 5570, 5699, 6370, 6545, 6580, 6595, 6660, 6675
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344237 at term 31 because 4225 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4

Examples

			340 is a member of this sequence because 340 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])