A344255 Number of partitions of n into 8 semiprime parts.
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 9, 8, 12, 12, 17, 16, 18, 18, 22, 25, 30, 29, 33, 36, 44, 45, 51, 54, 59, 63, 71, 78, 87, 90, 99, 106, 120, 124, 136, 147, 157, 166, 182, 199, 216, 223, 238, 259, 280, 298, 314
Offset: 32
Keywords
Links
Programs
-
Mathematica
h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]]; b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 9}]; a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 8}]; Table[a[n], {n, 32, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)
Formula
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} [Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021