cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344255 Number of partitions of n into 8 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 9, 8, 12, 12, 17, 16, 18, 18, 22, 25, 30, 29, 33, 36, 44, 45, 51, 54, 59, 63, 71, 78, 87, 90, 99, 106, 120, 124, 136, 147, 157, 166, 182, 199, 216, 223, 238, 259, 280, 298, 314
Offset: 32

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=8 of A344447.

Programs

  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 9}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 8}];
    Table[a[n], {n, 32, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)

Formula

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} [Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021