A344256 Number of partitions of n into 9 semiprime parts.
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 12, 13, 18, 16, 19, 19, 24, 27, 31, 31, 37, 38, 46, 50, 57, 58, 65, 71, 80, 86, 96, 102, 115, 119, 134, 146, 160, 167, 181, 197, 217, 232, 252, 269, 290, 306, 333, 364, 387, 407, 434, 474, 512, 541
Offset: 36
Keywords
Links
Programs
-
Mathematica
h[n_] := h[n] = If[n == 0, 0,If[PrimeOmega[n] == 2, n, h[n-1]]]; b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 10}]; a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 9}]; Table[a[n], {n, 36, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)
Formula
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} [Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021
Extensions
More terms from Alois P. Heinz, May 18 2021