cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A344266 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(3^(k-1)).

Original entry on oeis.org

1, 3, 9, 30, 81, 270, 729, 2269, 6597, 19926, 59049, 178146, 531441, 1596510, 4783698, 14355900, 43046721, 129162141, 387420489, 1162322946, 3486790962, 10460530350, 31381059609, 94143737979, 282429539721, 847290203766, 2541865887462, 7625602289826, 22876792454961, 68630391912807
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

A344267 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(4^(k-1)).

Original entry on oeis.org

1, 4, 16, 70, 256, 1088, 4096, 16644, 65656, 263168, 1048576, 4199520, 16777216, 67125248, 268439552, 1073809761, 4294967296, 17180148192, 68719476736, 274878973440, 1099511693312, 4398050705408, 17592186044416, 70368761292864, 281474976743296, 1125899973951488, 4503599628419632
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

A344268 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(5^(k-1)).

Original entry on oeis.org

1, 5, 25, 135, 625, 3250, 15625, 78760, 390925, 1956250, 9765625, 48847125, 244140625, 1220781250, 6103531250, 30517977755, 152587890625, 762941485875, 3814697265625, 19073496178125, 95367432031250, 476837207031250, 2384185791015625, 11920929201609625, 59604644775585625, 298023225097656250
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    dircon[v_, w_] := Module[{lv = Length[v], lw = Length[w], fv, fw}, fv[n_] := If[n <= lv, v[[n]], 0]; fw[n_] := If[n <= lw, w[[n]], 0]; Table[ DirichletConvolve[fv[n], fw[n], n, m], {m, Min[lv, lw]}]];
    a[n_] := Module[{A, v, w, m}, If[n<1, 0, v = Table[Boole[k == 1], {k, n}]; For[k = 2, k <= n, k++, m = Length[IntegerDigits[n, k]] - 1; A = (1 + x)^(5^(k - 1)) + x*O[x]^m // Normal; w = Table[0, {n}]; For[i = 0, i <= m, i++, w[[k^i]] = Coefficient[A, x, i]]; v = dircon[v, w]]; v[[n]]]];
    Array[a, 26] (* after Jean-François Alcover in A007896 *)

A344269 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(6^(k-1)).

Original entry on oeis.org

1, 6, 36, 231, 1296, 7992, 46656, 281252, 1680246, 10085472, 60466176, 362852028, 2176782336, 13060973952, 78364210752, 470186690667, 2821109907456, 16926669806148, 101559956668416, 609359800776048, 3656158441742592, 21936951003174912, 131621703842267136, 789730225242306480
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

A344270 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(7^(k-1)).

Original entry on oeis.org

1, 7, 49, 364, 2401, 17150, 117649, 825979, 5765977, 40370414, 282475249, 1977462228, 13841287201, 96889833950, 678223190498, 4747567340635, 33232930569601, 232630555172589, 1628413597910449, 11398895468722356, 79792266303376802, 558545866060610750, 3909821048582988049, 27368747353968794263
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

A344271 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(8^(k-1)).

Original entry on oeis.org

1, 8, 64, 540, 4096, 33280, 262144, 2101304, 16779232, 134250496, 1073741824, 8590231296, 68719476736, 549757911040, 4398046773248, 35184389011270, 281474976710656, 2251799950016256, 18014398509481984, 144115189151809536, 1152921504623624192, 9223372045444710400, 73786976294838206464
Offset: 1

Views

Author

Ilya Gutkovskiy, May 13 2021

Keywords

Crossrefs

A344298 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(9^(k-1)).

Original entry on oeis.org

1, 9, 81, 765, 6561, 59778, 531441, 4789614, 43049961, 387479538, 3486784401, 31381653015, 282429536481, 2541870611298, 22876792986402, 205891175433096, 1853020188851841, 16677182091899187, 150094635296999121, 1350851721164795655, 12157665459099975522, 109418989162893418818
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    dircon[v_, w_] := Module[{lv = Length[v], lw = Length[w], fv, fw}, fv[n_] := If[n <= lv, v[[n]], 0]; fw[n_] := If[n <= lw, w[[n]], 0]; Table[ DirichletConvolve[fv[n], fw[n], n, m], {m, Min[lv, lw]}]];
    a[n_] := Module[{A, v, w, m}, If[n<1, 0, v = Table[Boole[k == 1], {k, n}]; For[k = 2, k <= n, k++, m = Length[IntegerDigits[n, k]] - 1; A = (1 + x)^(9^(k - 1)) + x*O[x]^m // Normal; w = Table[0, {n}]; For[i = 0, i <= m, i++, w[[k^i]] = Coefficient[A, x, i]]; v = dircon[v, w]]; v[[n]]]];
    Array[a, 22] (* after Jean-François Alcover in A007896 *)
Showing 1-7 of 7 results.