cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344262 a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.

Original entry on oeis.org

1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0

Views

Author

Amrit Awasthi, May 13 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 =  (1+1)*1 =   2;
a(2) = (a(1)*2)+1 =  (2*2)+1 =   5;
a(3) = (a(2)+1)*3 =  (5+1)*3 =  18;
a(4) = (a(3)*4)+1 = (18*4)+1 =  73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)

Formula

E.g.f.: (x+1)*cosh(x)/(1-x). - Alois P. Heinz, May 14 2021
Lim_{n->infinity} a(n)/n! = 2*cosh(1) = A137204 = 2*A073743. - Amrit Awasthi, May 15 2021
a(n) = A344317(n) - A155521(n-1) for n > 0. - Alois P. Heinz, May 18 2021

A344418 a(n) = n*a(n-1) + n^(1+n mod 2), a(0) = 0.

Original entry on oeis.org

0, 1, 4, 13, 56, 281, 1692, 11845, 94768, 852913, 8529140, 93820541, 1125846504, 14636004553, 204904063756, 3073560956341, 49176975301472, 836008580125025, 15048154442250468, 285914934402758893, 5718298688055177880, 120084272449158735481, 2641853993881492180604
Offset: 0

Views

Author

Alois P. Heinz, May 17 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(1+n mod 2) end: a(0):= 0:
    seq(a(n), n=0..23);

Formula

E.g.f.: (x+1)*sinh(x)/(1-x).
a(n) = A344317(n) - n! = A344317(n) - A000142(n).
a(n) = A155521(n-1) + A344419(n) for n > 0.
Lim_{n-> infinity} a(n)/n! = 2*sinh(1) = 2*A073742 = e-1/e = A174548. - Amrit Awasthi, May 20 2021
Showing 1-2 of 2 results.