cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A344341 Gray-code Niven numbers: numbers divisible by the number of 1's in their binary reflected Gray code (A005811).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 30, 31, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 56, 57, 60, 62, 63, 64, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 105, 108, 111, 112, 116, 120, 123, 124, 126, 127, 128, 129, 132, 135, 136
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			2 is a term since its Gray code is 11 and 1+1 = 2 is a divisor of 2.
6 is a term since its Gray code is 101 and 1+0+1 = 2 is a divisor of 6.
		

Crossrefs

Subsequences: A344342, A344343, A344344.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2), A342726 (base i-1).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[150], gcNivenQ]

A344343 Starts of runs of 3 consecutive Gray-code Niven numbers (A344341).

Original entry on oeis.org

1, 2, 6, 7, 14, 30, 31, 62, 126, 127, 174, 184, 234, 243, 254, 304, 474, 483, 510, 511, 534, 543, 544, 783, 784, 903, 904, 954, 963, 1022, 1134, 1144, 1253, 1264, 1448, 1475, 1504, 1895, 1914, 1923, 1974, 2046, 2047, 2093, 2094, 2104, 2814, 2888, 2944, 3054, 3064
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			1 is a term since 1, 2 and 3 are all Gray-code Niven numbers.
		

Crossrefs

Subsequence of A344341 and A344342.
Subsequences: A344344.
Similar sequences: A154701 (decimal), A328206 (factorial), A328210 (Zeckendorf), A328214 (lazy Fibonacci), A330932 (binary), A331087 (negaFibonacci), A333428 (primorial), A334310 (base phi), A331822 (negabinary), A342428 (base 3/2).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[3000], AllTrue[# + {0, 1, 2}, gcNivenQ] &]

A351720 Numbers k such that k and k + 1 are both lazy-Lucas-Niven numbers (A351719).

Original entry on oeis.org

1, 175, 216, 399, 656, 729, 737, 759, 1000, 1991, 2716, 2820, 2925, 3970, 4068, 4224, 4499, 4641, 5316, 5819, 6565, 6720, 6902, 7890, 9840, 10751, 11843, 12194, 12614, 13034, 13272, 14909, 15483, 15495, 16029, 17234, 17444, 17731, 18074, 18885, 19305, 19669, 20188
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			175 is a term since 175 and 176 are both lazy-Lucas-Niven numbers: the maximal Lucas representation of 175, A130311(175) = 1110110101, has 7 1's and 175 is divisible by 5, and the maximal Lucas representation of 176, A130311(7) = 1110110111, has 8 1's and 176 is divisible by 8.
		

Crossrefs

Subsequence of A351719.
A351721 is a subsequence.

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[10^6], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[#*Reverse@LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; SequencePosition[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], {True, True}][[;; , 1]]

A351715 Numbers k such that k and k + 1 are both Lucas-Niven numbers (A351714).

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 29, 39, 47, 57, 80, 123, 129, 134, 152, 159, 170, 176, 199, 206, 245, 279, 326, 384, 387, 398, 404, 521, 531, 543, 560, 579, 615, 644, 651, 684, 755, 843, 849, 854, 872, 879, 890, 896, 944, 1024, 1052, 1064, 1070, 1071, 1095, 1350, 1382
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			6 is a term since 6 and 7 are both Lucas-Niven numbers: the minimal Lucas representation of 6, A130310(6) = 1001, has 2 1's and 6 is divisible by 2, and the minimal Lucas representation of 7, A130310(7) = 10000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Subsequence of A351714.
A351716 is a subsequence.

Programs

  • Mathematica
    lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[1400], And @@ lucasNivenQ/@{#, #+1} &]

A352090 Numbers k such that k and k+1 are both tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k and A278043(k+1) | k+1.
The odd tribonacci numbers, A000073(A042964(m)), are all terms.

Examples

			6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]

A344344 Starts of runs of 4 consecutive Gray-code Niven numbers (A344341).

Original entry on oeis.org

1, 6, 30, 126, 510, 543, 783, 903, 2046, 2093, 3773, 3903, 7133, 7743, 8190, 8223, 8703, 10087, 12303, 12543, 14343, 14463, 15423, 15903, 16143, 16263, 20167, 22687, 27727, 30247, 30653, 30783, 32766, 35629, 40327, 47509, 47887, 49133, 50407, 57533, 60071, 60487
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Comments

Are there 5 consecutive Gray-code Niven numbers? There are no such numbers below 10^10.

Examples

			1 is a term since 1, 2, 3 and 4 are all Gray-code Niven numbers.
		

Crossrefs

Subsequence of A344341, A344342 and A344343.
Similar sequences: A141769 (decimal), A328207 (factorial), A328211 (Zeckendorf), A328215 (lazy Fibonacci), A330933 (binary), A334311 (base phi), A331824 (negabinary), A342429 (base 3/2).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[60000], AllTrue[# + {0, 1, 2, 3}, gcNivenQ] &]

A352108 Numbers k such that k and k+1 are both lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1, 20, 39, 75, 115, 135, 155, 175, 176, 184, 204, 215, 264, 567, 684, 704, 725, 791, 846, 872, 1089, 1104, 1115, 1134, 1183, 1184, 1211, 1224, 1407, 1575, 1840, 1880, 2064, 2075, 2151, 2191, 2232, 2259, 2260, 2415, 2529, 2583, 2624, 2780, 2820, 2848, 2888, 2988
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			20 is a term since 20 and 21 are both lazy-tribonacci-Niven numbers: the maximal tribonacci representation of 20, A352103(20) = 10111, has 4 1's and 20 is divisible by 4, and the maximal tribonacci representation of 21, A352103(20) = 11001, has 3 1's and 21 is divisible by 3.
		

Crossrefs

Subsequence of A352107.
Subsequences: A352109, A352110.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[3000], q[#] && q[# + 1] &]

A352321 Numbers k such that k and k+1 are both Pell-Niven numbers (A352320).

Original entry on oeis.org

1, 4, 5, 9, 14, 28, 29, 33, 39, 63, 87, 110, 111, 115, 125, 140, 164, 168, 169, 183, 255, 275, 308, 338, 410, 444, 483, 507, 564, 579, 584, 704, 791, 984, 985, 999, 1004, 1024, 1025, 1115, 1134, 1154, 1164, 1211, 1265, 1308, 1323, 1351, 1395, 1415, 1424, 1491
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

All the odd-indexed Pell numbers (A001653) are terms.

Examples

			4 is a term since 4 and 5 are both Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[1500], q[#] && q[#+1] &]

A352343 Numbers k such that k and k+1 are both lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

1, 24, 63, 209, 216, 459, 560, 584, 656, 729, 999, 1110, 1269, 1728, 1859, 1989, 2100, 2196, 2197, 2255, 2650, 2651, 2820, 3443, 3497, 4080, 4563, 5291, 5784, 5785, 5837, 5928, 6252, 6383, 7344, 7657, 7812, 8150, 8203, 8459, 8670, 8749, 9251, 9295, 9372, 9464, 9840, 9884
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k and A352340(k+1) | k+1.

Examples

			24 is a term since 24 and 25 are both lazy-Pell-Niven numbers: the maximal Pell representation of 24, A352339(24) = 1210, has the sum of digits A352340(24) = 1+2+1+0 = 4 and 24 is divisible by 4, and the maximal Pell representation of 25, A352339(25) = 1211, has the sum of digits A352340(25) = 1+2+1+1 = 5 and 25 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[10^4], lazyPellNivenQ[#] && lazyPellNivenQ[#+1] &]

A352509 Numbers k such that k and k+1 are both Catalan-Niven numbers (A352508).

Original entry on oeis.org

1, 4, 5, 9, 32, 44, 55, 56, 134, 144, 145, 146, 155, 184, 234, 324, 329, 414, 426, 429, 434, 455, 511, 512, 603, 636, 930, 1004, 1014, 1160, 1183, 1215, 1287, 1308, 1448, 1472, 1505, 1562, 1595, 1808, 1854, 1967, 1985, 1995, 2051, 2075, 2096, 2135, 2165, 2255
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Examples

			4 is a term since 4 and 5 are both Catalan-Niven numbers: the Catalan representation of 4, A014418(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the Catalan representation of 5, A014418(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[2300], q[#] && q[#+1] &]
Showing 1-10 of 14 results. Next