A344352 Numbers that are the sum of four fourth powers in four or more ways.
236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1
Keywords
Examples
300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..20000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1,200)] count = 1 for pos in cwr(power_terms,4): tot = sum(pos) keep[tot] += 1 count += 1 rets = sorted([k for k,v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])